1) Rasyonel sayilarin sonlu uretecli altgruplari dongusel olmak zorunda. Sercan bunu baska bir soruda ispatlamisti. Belki yorum olarak yazar, ben nerede oldugunu animsamiyorum acikcasi. En azindan sonlu uretecli her altgrup ozalt grup demek.
2) $\frac{1}{2}Z+\cdots+\frac{1}{2^n}Z$ alt grubunun $\frac{1}{2^n}Z$ altgrubundan ne farki var anlamadim?
3) $a=\{a_p\}_{\text{$p$ asal}}$ ile elemanlari $\mathbb{N}\cup \{\infty\}$ kumesinden olan tipik bir elemanı gosterelim ve böyle bir $a$ dizisi icin su kumeyi tanimlayalim: $$S_a=\{\frac{1}{p^i}:i\leq a_p\}$$ ve son olarak $S_a$ ile uretilen altgrubu da $$Q_a$$ ile gosterelim. Eger $a$ sabit $\infty$ dizisi degilse bu bir ozaltgrup verir. Baska da ozaltgrubu yoktur diye iddia edecegim ama emin degilim ve derse gitmem gerek. Iddia dogru mu bence Nsky anlar. Baska ozaltgrubu var tabi, bu uretecleri tamsayilarla carparak elde edilen uretec kumeleriyle bulunanlar. Ama onlar bunlarin guzel altgruplari.
- Bunlarin ozaltrup olusturacagi $p-sel$ degerlendirmenin ultrametrik ozelliginden hemencik gozukur.
- Herhangi bir $G$ ozalt grubu icin $a$ dizisini soyle bulabiliriz. $a_p=\sup\{-v_p(g):g\in G\}$.