Merhabalar, aşağıdaki integrali hesaplarken $e^{i\theta}=u$ dönüşümünü uygularsam sonucu 0 buluyorum. Sınırlar $1$ den $1$'e oluveriyor.
Tabii ki sonuç sıfır değil, olması gereken dönüşüm $e^{i\theta}=z$ olmalıymış, ama o zaman da bir türlü Cauchy İntegral Formülüne geçiş yapamıyorum. Şimdiden teşekkürler.
Aslında Gauss'un Ortalama Değer Teoremi ile çözülüyor, onda da yanlış bir sonuç buluyorum.
$$\int_0^{2\pi} \sin^3 (3e^{i\theta} + \pi/4)d\theta$$