Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
798 kez görüntülendi

Elimizde $y,z$ olarak iki adet fonksiyon olsun. Bu ikisi arasinda da $y=zf(y)$ bagintisi olsun, $f$ fonksiyonumuz $y$ cisinden bir kuvvet serisi (power series). O halde tum $g(y)$ fonksiyonlarini $z$'nin bir kuvvet serisi olarak yazabiliriz ve o seri:

$g(y)=\sum_{k=1}^{\infty} \frac{1}{k!}\bigg( \big(f(y)^kg^{'}(y)\big)^{(k-1)}\bigg|_{y=0}\bigg)z^k$

serisidir. (Burda $^{(k-1)}$, $k-1$inci turevi.)


Ek:Burda ki tum'den kasit: surekli turevlenebilen tum.

notu ile kapatıldı: Kendisi Lagrange-Burmann fomulu ve ispati kolay bulunabilir.
Lisans Matematik kategorisinde (25.5k puan) tarafından 
tarafından kapalı | 798 kez görüntülendi

Bunun isbâtını soruyorsun sanırım.

Evet. Aslinda bu arada arastirip buldum, ne oldugunu. Lagrance-Burmann formuluymus bu. Cok ise yarar bir formul bence. Eger daha onceden ispatini yapmis biri guzel bir sekilde eklerse iyi olur.

bu bildigimiz analitik fonksyionlarin guc serisi acilimi degil mi? ayni ispat biraz modifikasyonla calismiyor mu?

Emin degilim ama orda direk bi nokta icin seri yazmiyor muyuz?  Burda $y=zf(y)$ var. $z$'i $y-y_0$ olarak aliyor burasi..$y_0=0$ olarak dusunursek $f(y)=1$ yapar ve dedigin gibi olur. Bu arada bulmus oldum iliskiyi :) Ispati da zor degilmis, bir iki adim..

20,279 soru
21,810 cevap
73,492 yorum
2,475,669 kullanıcı