Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
854 kez görüntülendi

$e_{n}=\left( 1+\dfrac {1} {n}\right) ^{n}$ dizisinin yakınsaklığını teoreme göre inceleyeniz.

Lisans Matematik kategorisinde (96 puan) tarafından 
tarafından düzenlendi | 854 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

Sorunuzun cevabi burda var.

(25.6k puan) tarafından 
Daha detaylı anlatabilir misinz?

Bunu yapmak için integral da lazım kullanmadan yapabilir miyiz?

Orda detayli anlattim zaten. Yani ara islemler uzun olsa bile zor degil. 

$x>0$'a genisletip $\ln$ alip $(1+\frac1x)\ln(x)$ limitini de inceleyebilirsiniz. Burdan da L'hoptial ile limitin $1$'e ve dolayisinyal istenenein $e$'ye gittigini gosterebilirsiniz.

Ayrica soruda teoremi de belli etmemissiniz.

20,346 soru
21,901 cevap
73,638 yorum
3,531,021 kullanıcı