Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$\mathbb{R}^2\times\mathbb{R}=\mathbb{R}\times\mathbb{R}^2=\mathbb{R}^3$ doğrumu?
0
beğenilme
0
beğenilmeme
298
kez görüntülendi
14 Kasım 2015
Lisans Matematik
kategorisinde
Laedri
(
190
puan)
tarafından
soruldu
|
298
kez görüntülendi
cevap
yorum
İzomorftur, eşit değil
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$v_1=\left(\begin{array}{c} 1\\1\\1\end{array}\right), \ v_2=\left(\begin{array}{c} 2\\2\\0\end{array}\right), \ v_3=\left(\begin{array}{c} 3\\0\\0\end{array}\right), \ $ olmak üzere $S=\{v_1,v_2,v_3\}$ kümesi $\mathbb{R}^3$ için bir bazdır ispatlayınız
$\mathbb{R}^2$'de $$d(x,y):=\left\{\begin{array}{ccc} ||x||_2+||y||_2 & , & ||x||_2\neq ||y||_2 \\ ||x-y||_2 & , & ||x||_2=||y||_2\end{array}\right.$$ kuralı ile verilen $d:\mathbb{R}^2\times \mathbb{R}^2\to \mathbb{R}$ metriğinin bir normdan elde edilemeyeceğini gösteriniz.
$\mathbb{R}^2$'de $$d(x,y):=\left\{\begin{array}{ccc} ||x||_2+||y||_2 & , & ||x||_2\neq ||y||_2 \\ ||x-y||_2 & , & ||x||_2=||y||_2\end{array}\right.$$ kuralı ile verilen $d:\mathbb{R}^2\times \mathbb{R}^2\to \mathbb{R}$ fonksiyonunun bir metrik olduğunu gösteriniz.
$$X=\{(x,y)|x^2+y^2<1, y\geq 0\}\subseteq \mathbb{R}^2$$ olmak üzere $$X\cong [0,1)\times [0,1)$$ olduğunu gösteriniz.
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,282
soru
21,821
cevap
73,503
yorum
2,530,193
kullanıcı