Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
333 kez görüntülendi

$x\in\mathbb{R}\setminus\{0\}$ olmak üzere $x^0=1$ tanım mıdır?

Lisans Matematik kategorisinde (190 puan) tarafından  | 333 kez görüntülendi

3 Cevaplar

0 beğenilme 0 beğenilmeme

$$x\in\mathbb{R}\setminus \{0\} \text{ ise } x^0:=1$$ ve

$$x\in\mathbb{R} \text{ ve } n\in\{1,2,3,\ldots\} \text{ ise } x^n:=\underset{n \text{ tane}}{\underbrace{x\cdot x\cdot\ldots \cdot x}}$$

şeklinde tanımlanır.

(11.4k puan) tarafından 
0 beğenilme 0 beğenilmeme

$\mathbb R\backslash \{0\}$ çarpmaya göre grup ve $x^n$ murad.ozkoc'un dediği gibi tanımlanıyor. $x^0$ da haliyle hiç $x$ olmayacak çarpmada, yani sadece birim eleman olan $1$ geriye kalıyor. Tanımdan ziyade olması gereken de bu. $x^n$ elemanının tersi $x^{-n}$ çarpımları grup yapısından dolayı $1$'i verir ve üsler toplamı $0$. ($n$ burda pozitif tam sayı).

(25.4k puan) tarafından 
0 beğenilme 0 beğenilmeme

$x\neq 0, \quad n\in Z$ için , $\frac{x^n}{x^n}=1......(*)$  ve $\frac{x^n}{x^n}=x^{n-n}=x^0.......(**)$  

$(*),(**)$ den $x^0=1$ olur.


(19.2k puan) tarafından 

$x^0$ kavramı $\frac{x^m}{x^n}$ kavramından önce gelir.

Neye göre önce. Ve varsayalım ki önce. Üstel sayı özelliklerinden yararlanarak doğruluğunun gösterilmesinin nasıl bir sakıncası olabilir ki? Ayrıca herhangi bir önermenin doğruluğunu kanıtlamak için,yalnızca onun ortaya atıldığı zamana kadar olan bilgilere göre mi ispatlamak zorundayız.Böyle bir zorunluluğun olduğunu bilmiyordum doğrusu. 

20,247 soru
21,771 cevap
73,412 yorum
2,131,577 kullanıcı