$ax^2+bx+c=0$
$x^2+\frac{b}{a}x+\frac{c}{a}=0$
$x^2+2\frac{b}{2a}x=-\frac{c}{a}$
$x^2+2\frac{b}{2a}x+\frac{b^2}{4a^2}=\frac{b^2}{4a^2}-\frac{c}{a}$
$(x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}$
$\sqrt{(x+\frac{b}{2a})^2}=\sqrt{\frac{b^2-4ac}{4a^2}}$
$x_1+\frac{b}{2a}=\frac{\sqrt{b^2-4ac}}{2a}$
$x_2+\frac{b}{2a}=-\frac{\sqrt{b^2-4ac}}{2a}$
$x_1=-\frac{b}{2a}+\frac{\sqrt{b^2-4ac}}{2a}=\frac{-b+\sqrt{b^2-4ac}}{2a}$
$x_2=-\frac{b}{2a}-\frac{\sqrt{b^2-4ac}}{2a}=\frac{-b-\sqrt{b^2-4ac}}{2a}$