Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
270 kez görüntülendi

Tikiz ile sozde-tikiz arasinda fark var midir? (compact, quasi-compact) Sadece uzayin hausdorff olup olmamasi ile mi iliskili?

Lisans Matematik kategorisinde (25.2k puan) tarafından  | 270 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

Tanım: $(X,\tau)$ Hausdorff uzayı ve $A\subset X$ olmak üzere

$$A, \,\ \tau\text{-tıkız}:\Leftrightarrow [(\mathcal{A}\subset \tau)(A\subset\cup \mathcal{A})\Rightarrow (\exists \mathcal{A}^*\subset\mathcal{A})(\mid \mathcal{A^*\mid <\aleph_0})(A\subset\cup \mathcal{A}^*)]$$

$$X, \,\ \tau\text{-tıkız}:\Leftrightarrow [(\mathcal{A}\subset \tau)(X=\cup \mathcal{A})\Rightarrow (\exists \mathcal{A}^*\subset\mathcal{A})(\mid \mathcal{A^*\mid <\aleph_0})(X=\cup \mathcal{A}^*)]$$

Tanım: $(X,\tau)$ topolojik uzay ve $A\subset X$ olmak üzere

$$A, \,\ \tau\text{-tıkızımsı(quasi compact)}:\Leftrightarrow [(\mathcal{A}\subset \tau)(A\subset\cup \mathcal{A})\Rightarrow (\exists \mathcal{A}^*\subset\mathcal{A})(\mid \mathcal{A^*\mid <\aleph_0})(A\subset\cup \mathcal{A}^*)]$$

$$X, \,\ \tau\text{-tıkızımsı(quasi compact)}:\Leftrightarrow [(\mathcal{A}\subset \tau)(X=\cup \mathcal{A})\Rightarrow (\exists \mathcal{A}^*\subset\mathcal{A})(\mid \mathcal{A^*\mid <\aleph_0})(X=\cup \mathcal{A}^*)]$$

Tanım: $(X,\tau)$ topolojik uzay ve $f:X\rightarrow \mathbb{R}$ fonksiyon olmak üzere

$$X, \,\ \tau\text{-sözde tıkız (pseudo compact)}:\Leftrightarrow (f, \,\ (\tau\text{ - }\mathcal{U}) \,\ \text{ sürekli})(f[X], \,\ \mathcal{U}\text{-tıkız})$$

(11k puan) tarafından 
tarafından düzenlendi

psudo olani degil de, quasi olani sormustum.

Pardon sorunuzu dikkatli okumamışım. Tekrar düzenledim. Bazı matematikçiler tıkız uzay tanımını verirken uzayın Hausdorff olması gerektiğini savunuyor (ısrar ediyor, gerekli diyor, öyle olmalı falan diyor.) Örnek:Robin Hartshorne - Algebraic Geometry.
19,950 soru
21,585 cevap
72,663 yorum
949,993 kullanıcı