a) Öncelikle gözlem ile başlayalım eğer $\mathrm{L}(p)=\dfrac{p+1}{4}$ ise $\dfrac{p+1}{4}$ bir asal sayı olmalıdır. $2$ haricinde bir değer alması halinde $p$'nin $8k+3$ formunda olması gerekir. Zaten $\left (\dfrac{a}{p}\right )$ legendre sembolü olmak üzere, $p$ tek asal sayısı için $\left (\dfrac{2}{p}\right )= (-1)^{\frac{p^2-1}{8}}$ olduğundan $8k+1$ ve $8k+7$ formatındaki sayılar için $\mathrm{L}(p)=2<\sqrt{p}$ olacaktır. Dolayısıyla geriye incelenecek sadece $8k+3$ ve $8k+5$ formundaki asal sayılar kalır.
$i)$ $p\equiv 5\pmod{8}$ ise $p$, $4k+1$ formundadır ve $a^2+b^2=p$ olacak şekilde $a$ ve $b$ pozitif tamsayıları vardır (Bunun ispatı bir çok yerde vardır, benim zamanında hazırladığım bir PDF dosyası da bulunmakta, burada). $a$ ve $b$'den birisi tek diğeri çifttir. Genelliği bozmadan $a$ tek ve $b$ çift olsun. $b\equiv 2\pmod{4}$ olmalıdır çünkü aksi taktirde $$p=a^2+b^2\equiv a^2\equiv 1 \pmod{8}$$ olur. Bu bir çelişkidir. Dolayısıyla eğer $b\neq 2$ ise $b$'nin en az bir tek asal böleni vardır. Bu asal bölen $q$ olsun. O halde $$p=a^2+b^2\equiv a^2\pmod{q}\Longrightarrow \left(\dfrac{p}{q} \right )=1$$ olur. $\left(\dfrac{p}{q} \right )\left(\dfrac{q}{p} \right )=(-1)^{\frac{(p-1)(q-1)}{4}}$ olduğundan ve $p=8k+5$ formunda olduğundan $(-1)^{\frac{(p-1)(q-1)}{4}}=1$ olur. Yani $\left(\dfrac{q}{p} \right )=1$ olmalıdır. Dolayısıyla $q$ karekalan bir asal sayıdır. $q\mid b$ olduğundan $b\geq q$ olur. $$p=a^2+b^2> q^2\Longrightarrow \sqrt{p}> q\Longrightarrow \sqrt{p}> q \geq \mathrm{L}(p)$$ elde edilir. Eğer $b=2$ ise $p=a^2+4$ olur. $p>5$ olduğundan $a>1$ olmalıdır. $a$ tek olduğundan $a$'nın da en az bir tane tek asal böleni olması gerekir. Bu asal sayıya $r$ dersek aynı işlemleri yaparsak $\sqrt{p}> r \geq \mathrm{L}(p)$ elde edilir.
$ii)$ Eğer $p\equiv 3\pmod{8}$ ise incelememiz gereken ifade için b şıkkındaki asal sayıları inceleyelim, $\mathrm{L}(p)=\dfrac{p+1}{4}$, $\mathrm{L}(p)+2=\dfrac{p+9}{4}$ ve $\mathrm{L}(p)+6=\dfrac{p+25}{4}$'dir. Dolayısıyla buradan $\dfrac{p+b^2}{4}$ ifadesini kullanacağımızı öngörebiliriz. $\dfrac{p+b^2}{4}=ac$ ifadesine bakalım. $p=4ac-b^2$ olur. Her $8k+3$ formatındaki asal sayı için sonsuz sayıda $(a,b,c)$ pozitif tamsayı üçlüsü elde edebiliriz ($b$'yi tek alırsak $\dfrac{p+b^2}{4}$ tamsayı olur). Burada $a$, $b$ ve $c$ tek sayı olmalıdır aksi takdirde çelişki olacağı rahatlıkla gözlemlenebilir. Eğer bu $(a,b,c)$ üçlüleri arasında $a>1$ ve $b\leq a\leq c$ olacak şekilde bir üçlü varsa $a$ tek olduğundan $a$'nın bir tek asal böleni vardır. Bu asal sayı $q$ olsun. $$-p=b^2-4ac\equiv b^2\pmod{q}\Longrightarrow \left(\dfrac{-p}{q}\right )=1$$ olur. $$\left(\dfrac{p}{q} \right )\left(\dfrac{q}{p} \right )=(-1)^{\frac{(p-1)(q-1)}{4}}=(-1)^{\frac{((8k+3)-1)(q-1)}{4}}=(-1)^{\frac{q-1}{2}}=\left(\dfrac{-1}{q} \right )\Longrightarrow \left(\dfrac{-p}{q} \right )\left(\dfrac{q}{p} \right )=1\Longrightarrow \left(\dfrac{q}{p} \right )=1$$ olur. Yani $q$ karekalan bir asal sayıdır. $$p=4ac-b^2\geq 4ac-a^2\geq 4a^2-a^2=3a^2\geq 3q^2\Longrightarrow \sqrt{p}> \sqrt{\dfrac{p}{3}}> q\geq \mathrm{L}(p)$$ olur.
Dolayısıyla $\mathrm{L}(p)\geq \sqrt{p}$ ise $p=4ac-b^2$ eşitliğini sağlayan pozitif $(a,b,c)$ tamsayı üçlülerinden hiçbiri $a>1$ veya $b\leq a \leq c$ şartlarından birini sağlamıyordur. $b=1$ için $ac=\dfrac{p+1}{4}$ olur. $\dfrac{p+1}{4}$ asal sayı olmalıdır aksi takdirde bileşik sayı olur ($p>5$ olduğundan $1$ olamaz) ve $1<a\leq c$ olacak şekilde $a$ ve $c$ vardır. Bu da sağlanmamasını istediğimiz şartları sağladığı anlamına gelir. Bu bir çelişkidir. Ayrıca $\dfrac{p+1}{4}$ karekalandır çünkü $\dfrac{p+1}{4}\equiv \dfrac{1}{4}\equiv \left (\dfrac{1}{2} \right )^2\pmod{p}$ olur, $p$ tek olduğundan $\dfrac{1}{2}$ sayısı, $p$ modunda bir tamsayıya denktir. Dolayısıyla $\dfrac{p+1}{4}\equiv x^2\pmod{p}$ olacak şekilde bir $x$ tamsayısı vardır. Şimdi $L(p)=\dfrac{p+1}{4}$ olduğunu gösterelim. Aksini kabul edelim. $\mathrm{L}(p)=q<\dfrac{p+1}{4}$ olsun. $p$, $8k+3$ formunda olduğundan ve $q$ karekalan olduğundan yukarda yaptıklarımızı burada da yaparsak $\left(\dfrac{-p}{q}\right)=1$ olduğunu bulabiliriz. Dolayısıyla $u^2\equiv -p\pmod{q}$ olacak şekilde $q>u$ pozitif tamsayısı vardır. Hem $u$ hem de $q-u$ bu denkliği sağlayacağından genelliği bozmadan $u$ tek olsun diyebiliriz. Yani $u^2+p=qt$ olacak şekilde $t$ vardır. $u$ tek olduğundan ve $p\equiv 3\pmod{8}$ olduğundan $t\equiv 4\pmod{8}$ bulunur. $t=4m$ için $m$ tektir. $p=4qm-u^2$ ifadesi elde edilir ki yukarda incelediğimiz ifadenin aynısıdır. Kabul gereği $(a,b,c)=(q,u,m)$ ve $(a,b,c)=(m,u,q)$ üçlüleri $a>1$ veya $b\leq a\leq c$ şartlarından en az birini sağlamamalıdır. Yani $a=1$ veya $a<b$ veya $c<a$ olmalıdır. $q>1$ ve $q>u$ olduğunu kullanırsak $(a,b,c)=(q,u,m)$ için $q>m$ elde edilir. $(a,b,c)=(m,u,q)$ için $m=1$ veya $m<u$ elde edilir. Yani $m=1$ veya $q>u>m$ olmalıdır.
Eğer $q>u>m>1$ ise $m$ tek olduğundan $m$'yi bölen bir tek asal sayı vardır. Bu asal sayıya $r$ dersek $-p\equiv u^2-4qm\equiv u^2\pmod{r}$ olur ve $\left ( \dfrac{-p}{r}\right )=1$ olur. Yukarıda da gösterdiğimiz gibi $\left ( \dfrac{r}{p}\right )=1$ olur yani $r$ de bir karekalandır fakat bu $q$'nun en küçük karekalan asal sayı olmasıyla çelişir. Dolayısıyla $m=1$ olmalıdır. $$u^2+p=4q<4\left(\dfrac{p+1}{4}\right)=p+1\Rightarrow u^2<1$$ olur, çelişki. Dolayısıyla $\dfrac{p+1}{4}$ en küçük karekalan asal sayı olmalıdır. Bu da soruda istenileni ispatlar.
Örnek: $p=19,43,67,163$ asalları bu şartı sağlar.
b) a şıkkında gösterdiğimiz gibi $\mathrm{L}(p)=\dfrac{p+1}{4}$ ise $p=7$ durumu hariç $p$, $8k+3$ formunda olmalıdır. $p>11$ verildiğinden $p\geq 13$'dür fakat $p=13$ ve $p=17$ için $\mathrm{L}(p)=\dfrac{p+1}{4}$ eşitliğini sağlamadığı için $p\geq 19$ durumuna bakmamız yeterlidir ($13$ ve $17$, $8k+3$ formunda değildir). a şıkkının çözümünden $p=4ac-b^2$ olacak şekildeki her $(a,b,c)$ pozitif tamsayı üçlüleri için $a>1$ veya $b\leq a\leq c$ şartlarından en az birinin sağlanmayacağını biliyoruz. Yani $a=1$ veya $a<b$ veya $c<a$ olmalıdır. $p=4ac-b^2$ ifadesinde $b=1$ için $\dfrac{p+1}{4}$ ifadesinin asal sayı olduğunu göstermiştik. Benzer işlemleri yapalım. $b=3$ için $ac=\dfrac{p+9}{4}=\mathrm{L}(p)+2$ olur. Bu eşitliği sağlayan her $a$ ve $c$ için $a=1$ veya $a<3$ veya $c<a$'dır. $a$ tek sayı olduğundan $a<3$ ise $a=1$'dir. Dolayısıyla $a=1$ veya $c<a$'dır. Eğer $\dfrac{p+9}{4}$ asal sayı değilse $1$ olamayacağı bariz olduğundan bileşik sayı olmalıdır. Dolayısıyla $1<a\leq c<\dfrac{p+9}{4}$ olacak şekilde $a$ ve $c$ vardır. Bu bir çelişkidir. Dolayısıyla $\dfrac{p+9}{4}=\mathrm{L}(p)+2$ asal sayıdır.
$b=5$ için $ac=\dfrac{p+25}{4}=\mathrm{L}(p)+6$ olur. Şartlar ise şu hale gelir; $a=1$ veya $a<5$ veya $c<a$ olur. $a<5$ ise $a=1$ veya $a=3$'dür. Lakin $a=3$ olamaz çünkü $$3c=\mathrm{L}(p)+6\Longrightarrow 3\mid \mathrm{L}(p)\Longrightarrow \mathrm{L}(p)=3$$ olur. $\mathrm{L}(p)=\dfrac{p+1}{4}=3$ ise $p=11$ olur fakat $p>11$ olduğundan çelişkidir. Dolayısıyla $a=1$ veya $c<a$ olmalıdır. Yukarıdakine benzer şekilde, $\dfrac{p+25}{4}$ asal değilse bileşik sayıdır ve bu durumda da $1<a\leq c<\dfrac{p+25}{4}$ olacak şekilde $a$ ve $c$ vardır. Bu bir çelişkidir. $\mathrm{L}(p)+6$ asal sayıdır.