∞∑n=11(4n2−1)2=∞∑n=11(2n−1)2(2n+1)2 oldugu acik.
1(2n−1)2(2n+1)2=A(2n−1)+B(2n−1)2+C(2n+1)+D(2n+1)2⟹A=−14,B=D=C=14
∞∑n=11(4n2−1)2=−14∞∑n=11(2n−1)+14∞∑n=11(2n−1)2+14∞∑n=11(2n+1)+14∞∑n=11(2n+1)2 olur. (1)
1. ve 3. serileri birlestirisek
14∞∑n=1−1(2n−1)+1(2n+1)=14[−11+13−13+15−15+17−⋯]=−14 (teleskopik seri oldugundan)
∞∑n=11n2=π26 oldugu surada gosterilmis.
∞∑n=11(2n)2=14∞∑n=11n2=14π26=π224
∞∑n=11(2n−1)2=∞∑n=11n2−∞∑n=11(2n)2 oldugu acik. (2)
∞∑n=11(2n−1)2=π26−π224=π28
∞∑n=11(2n+1)2=132+152+172+⋯=−112+112+132+152+172+⋯=−1+∞∑n=11(2n−1)2=−1+π28
Bu degerleri (1) de yerine koyarsak,
∞∑n=11(4n2−1)2=−14+14π28+14(−1+π28)=π216−12
__________________________________________________________
(2) esitligi surdan daha acik gorulebilir..
[∞∑n=11n2=112+122+132+142+⋯∞∑n=11(2n)2=122+142+162+⋯∞∑n=11(2n−1)2=112+132+152+172+⋯]