Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
Sabit fonksiyonlar süreklidir ispatı
0
beğenilme
0
beğenilmeme
583
kez görüntülendi
Sabit fonksiyonlar sürekli ise her sureklı fonksıyon sabittir de dıyebılır mıyız?
süreklilik
sürekli-fonksiyon
sabit-fonksiyon
2 Nisan 2021
Lisans Matematik
kategorisinde
Esrabayırr
(
11
puan)
tarafından
soruldu
|
583
kez görüntülendi
cevap
yorum
Surekli olan ve sabit olmayan fonksiyon ornegi verebilir misin?
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$f:\mathbb{R}\to\mathbb{Z}$ fonksiyonu sürekli ise $f$ fonksiyonunun sabit fonksiyon olduğunu gösteriniz.
$f:\mathbb{Z}\to\mathbb{R}$ fonksiyonu süreklidir.
f:R*2---->R ve x=(x1,x2)€R*2 için f(x)=maks(x1,x2) olarak tanımlanıyor. Bu durumda f fonksyonunun x=(0,0) noktasında sürekli olduğunu gösteriniz.(Not: bu soruyu Analiz 2 deki € ve S yöntemiyle yapabilrsiniz.)
$(X,\tau)$ herhangi bir topolojik uzay ve $f,g\in\mathbb{R}^X$ olmak üzere $$(f, \ (\tau\text{-}\mathcal{U}) \text{ sürekli})(g, \ (\tau\text{-}\mathcal{U}) \text{ sürekli})\Rightarrow f+g,\ (\tau\text{-}\mathcal{U}) \text{ sürekli}$$ olduğunu gösteriniz.
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,284
soru
21,823
cevap
73,508
yorum
2,570,278
kullanıcı