Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
1.8k kez görüntülendi
f(x,y)={x3x2+y2,(x,y)(0,0)0(x,y)=(0,0)

 

parcali fonksiyonunun (0,0) noktasinda surekliligini inceleyiniz
notu ile kapatıldı: Soru sahibinin denemelerini yazması bekleniyor
Lisans Matematik kategorisinde (15 puan) tarafından 
tarafından kapalı | 1.8k kez görüntülendi
Limit var mi bir bak bakalim.
var hocam süreklidir
Nedir limit? Ve nasil buldun? Surekliligin tanimini yazarmisin?
süreklilik için limit olmalı. iki noktada cevap sıfır
2 nokta yok ki. Nasıl 2 lmit buldun? Tek nokta var (0,0)
Sureklilik icin limitin varligi gerekli ama yeterli degil..
iki noktadan kastım orjinde var yani
ilk değişkende x küp  yerine x ve y li iki değişken olsaydı limit olmuyordu zaten sıkıntı yaşadığım kısım burası
benim bulduğum bu fonksiyon (0,0) noktasında ki değeri 0 olduğundan bu fonksiyon (0,0) da süreklidir. doğru mu değil mi bilmiyorum
x yerine sıfır koyarsak sonuç sıfır ve y yerine sıfır koyarsak sonuç yine sıfır. En son olarak x=y yaparsak; y yerine x koyunca sonuç x/2  , x yerine y koyarsak y/2 sonuç burda pil bitti bende işte tekrar x ve y yerine  sıfır koyarsak yine sıfır o yüzden süreklidir diyorm inşallah yanılmam...
Kutupsal koordinatlara gecip oyle limit almayi dene bakalim. Yani x=rcos(θ) ve y=rsin(θ) koy ve r0 yap.
sonuç ; r cos⁡(θ) çıkmaktadır. sadeleştirme sonuç cos v sin tetatlı çıkarsa limit yoktur. sonuç sayı çıkarsa limit vadır.
Her x,yR{(0,0)} için x2x2+y21 oluşundan bir şey çıkar mı acaba?
20,312 soru
21,868 cevap
73,589 yorum
2,860,249 kullanıcı