Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
78 kez görüntülendi

Kareli ortalaması $12$ , aritmetik ortalaması $8$ olan kitlenin varyansı nedir?

Lisans Matematik kategorisinde (450 puan) tarafından  | 78 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$n$ tane terimden oluşan kesikli veri grubunu alalım: $x_1, x_2, \dots, x_n$ terimlerinin karesel ortalaması $$ \sqrt{\sum_{k=1}^n\dfrac{x_k^2}{n}}=12$$ ve aritmetik ortalaması $$ \bar{x} = \sum_{k=1}^n\dfrac{x_k}{n} = 8$$ veriliyor. $$ (x_k - \bar{x})^2 = x_k^2 - 2x_k\bar{x} + \bar{x}^2$$ tam kare özdeşliğini ve toplam sembolünün özelliklerini kullanarak

$$ \sum_{k=1}^n(x_k - \bar{x})^2 = \sum_{k=1}^nx_k^2 -16\sum_{k=1}^nx_k + 64n $$ olup $$ \sum_{k=1}^n(x_k - \bar{x})^2 =144n -16\cdot 8n + 64n = 80n$$ elde edilir. Buna göre $$ \text{Var} = \sum_{k=1}^n\dfrac{(x_k-\bar{x})^2}{n-1} =\dfrac{80n}{n-1}$$ elde edilir.


Not: Veri grubu kesikli değil de sürekli olursa toplam sembollerinin yerine integral kullanılacaktır. Bu durumda da veri sayısı için $n\to \infty $ durumu oluştuğundan $$\text{Var} = \lim_{n\to\infty} \dfrac{80n}{n-1} = 80$$elde edilecektir diye umuyorum. İntegral gösterimi içeren sürekli veri grubun ait çözümü size bırakıyorum.

(1.1k puan) tarafından 

Teşekkür ederim lokman hocam en kisa zamanda bakacam.

18,606 soru
20,878 cevap
68,083 yorum
19,437 kullanıcı