Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi

Merhablar

1=0 olması yerine 1=0+ olması gerekmez miydi ?

Yani ;

12=0.5

14=0.25

18=0.125

11024=0.0009765625

kısacası gittikçe küçülüyor ama hiçbir zaman 0'a ulaşmıyor.Yani bu sebepten ötürü bunun 0'a sağdan yaklaşan bir sayı olması gerektiğini düşündüm.

1=0 olmasının bir sebebi mi var ? Yoksa bir varsayım mı? Umarım saçma olmamıştır.

Şimdiden Teşekkürler...

Orta Öğretim Matematik kategorisinde (77 puan) tarafından  | 1k kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme
En İyi Cevap

Sonsuz diye bir (gercel) sayi yok. Eger 1'i limiti sonsuza giden bir fonksiyona bolup limit alirsan sifira gider cunku 0+ diye bir (gercel) sayi yok. Eger parametre degistireceksen x icin u=1/x diyeceksen u0+ demeliyiz. Ornegin limx(x|sin(1/x)|)=limu0+|sinu|u=1 olur. Eger u0+ yerine u0 yazilirsa limu0|sinu|u  limiti var olmadigindan yanlis bir sonuc elde edilir. 

(25.5k puan) tarafından 
tarafından seçilmiş
Anladım hocam.Teşekkürler .Yanlız kalkülüse daha yeni başlamış bir olarak bilgisizliğimi mazur görün.
Burada ;
limu0+|sinu|u=1
sinüs fonksiyonunun  0'a yaklaşan bir sayıya göre nasıl hesaplanacağını bilmiyorum.Buranın neden 1'e eşit olduğunu tam kavrayamadım.

limx0sinxx=1 oldugunu biliyor musun? Daha kolay olarak limxx|1/x|=limu0+|u|u ornegini verebiliriz.

Anladım hocam.Yeniden Teşekkürler.

20,297 soru
21,840 cevap
73,541 yorum
2,726,987 kullanıcı