Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
954 kez görüntülendi

$f$ lineer donusumu $R^2$  den  $R^3$ e 

$f (x,y)=(x,x+y,x-y)$ olarak veriliyor ve

$f (R^2)$ uzayinin bulunmasi isteniyor.

Ne anlamaliyim?

Lisans Matematik kategorisinde (94 puan) tarafından  | 954 kez görüntülendi

$\mathbb{R}^2$ kümesinin $f$ fonksiyonu altındaki görüntüsü soruluyor. Yani

$$f\left[\mathbb{R}^2\right]=\left\{f(x,y)\Big{|}(x,y)\in\mathbb{R}^2\right\}=\left\{(x,x+y,x-y)\Big{|}x,y\in\mathbb{R}\right\}=?$$

İlk olarak şunu söyleyebiliriz:

$f$ fonksiyonu örten olmadığından $$f\left[\mathbb{R}^2\right]\neq\mathbb{R}^3.$$

Örten olmadığını şöyle gösterebiliriz. Örneğin $$(1,2,3)\in\mathbb{R}^3$$ fakat $$f(x,y)=(1,2,3)$$ olacak şekilde bir $$(x,y)\in\mathbb{R}^2$$ yoktur.

Hocam donusumun bire bir oldugunu da soyleyebilir miyiz? Goruntunun bir duzlem oldugunu soyleyemeyiz herhalde. Fakat baska ne olur dusunemiyorum.

Donusumun uretec(baz) vektorlerini bulabilir misin?


20,280 soru
21,813 cevap
73,492 yorum
2,483,345 kullanıcı