Kanıt:
(⇒): limx→a+f(x)=L, (xn)∈(A∩(a,∞))N, xn→a ve ϵ>0 olsun.
ϵ>0limx→a+f(x)=L}⇒(∃δ>0)(A∩(a,a+δ)⊆f−1[(L−ϵ,L+ϵ)])(xn→a)((xn)∈(A∩(a,∞))N)}⇒
⇒(∃K∈N)(n≥K⇒xn∈A∩(a,a+δ)⊆f−1[(L−ϵ,L+ϵ)])
⇒(∃K∈N)(n≥K⇒f(xn)∈f[A∩(a,a+δ)]⊆(L−ϵ,L+ϵ))
⇒(∃K∈N)(n≥K⇒f(xn)∈(L−ϵ,L+ϵ)).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(⇐): limx→a+f(x)≠L olsun.
limx→a+f(x)≠L⇒(∃ϵ>0)(∀δ>0)(A∩(a,a+δ)⊈f−1[(L−ϵ,L+ϵ)])
⇒(∃ϵ>0)(∀n∈N)(A∩(a,a+1n)⊈f−1[(L−ϵ,L+ϵ)])
⇒(∃ϵ>0)(∀n∈N)(∃xn∈A∩(a,a+1n))(f(xn)∉(L−ϵ,L+ϵ))
⇒(∃(xn)∈(A∩(a,∞))N)(xn→a)(f(xn)↛L).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NOT:
[(∀(xn)∈(A∩(a,∞))N)(xn→a⇒f(xn)→L)]⇒[limx→af(x)=L]
≡
[limx→a+f(x)=L]′⇒[(∀(xn)∈(A∩(a,∞))N)(xn→a⇒f(xn)→L)]′
≡
limx→a+f(x)≠L⇒(∃(xn)∈(A∩(a,∞))N)(xn→a)(f(xn)↛L)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−