Kanıt:
(⇒): limx→a+f(x)=L, (xn)∈(A∩(a,∞))N, xn→a ve ϵ>0 olsun.
ϵ>0limx→a+f(x)=L}⇒(∃δ>0)(A∩(a,a+δ)⊆f−1[(L−ϵ,L+ϵ)])(xn→a)((xn)∈(A∩(a,∞))N)}⇒
⇒(∃K∈N)(n≥K⇒xn∈A∩(a,a+δ)⊆f−1[(L−ϵ,L+ϵ)])
⇒(∃K∈N)(n≥K⇒f(xn)∈f[A∩(a,a+δ)]⊆(L−ϵ,L+ϵ))
⇒(∃K∈N)(n≥K⇒f(xn)∈(L−ϵ,L+ϵ)).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(⇐): limx→a+f(x)≠L olsun.
limx→a+f(x)≠L⇒(∃ϵ>0)(∀δ>0)(A∩(a,a+δ)⊈f−1[(L−ϵ,L+ϵ)])
⇒(∃ϵ>0)(∀n∈N)(A∩(a,a+1n)⊈f−1[(L−ϵ,L+ϵ)])
⇒(∃ϵ>0)(∀n∈N)(∃xn∈A∩(a,a+1n))(f(xn)∉(L−ϵ,L+ϵ))
⇒(∃(xn)∈(A∩(a,∞))N)(xn→a)(f(xn)↛
-----------------------------------
NOT:
\left[\left(\forall (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a\Rightarrow f(x_n)\to L)\right] \Rightarrow \left[\lim\limits_{x\to a}f(x)=L\right]
\equiv
\left[\lim\limits_{x\to a^+}f(x)= L\right]'\Rightarrow \left[\left(\forall (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a\Rightarrow f(x_n)\to L)\right]'
\equiv
\lim\limits_{x\to a^+}f(x)\neq L\Rightarrow \left(\exists (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a)(f(x_n)\nrightarrow L)
-----------------------------------