Kanıt:
(\Rightarrow): \lim\limits_{x\to a^+}f(x)=L, (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}, \ x_n\to a ve \epsilon>0 olsun.
\left.\begin{array}{r} \epsilon>0 \\ \\ \lim\limits_{x\to a^+}f(x)=L \end{array} \right\}\Rightarrow \begin{array}{c} \\ \\ \left. \begin{array}{r} (\exists \delta>0)(A\cap (a,a+\delta)\subseteq f^{-1}[(L-\epsilon,L+\epsilon)]) \\ \\ (x_n\to a)\left((x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right) \end{array} \right\} \Rightarrow \end{array}
\begin{array}{r} \Rightarrow (\exists K\in\mathbb{N})(n\geq K\Rightarrow x_n\in A\cap (a,a+\delta)\subseteq f^{-1}[(L-\epsilon,L+\epsilon)]) \end{array}
\begin{array}{r} \Rightarrow (\exists K\in\mathbb{N})(n\geq K\Rightarrow f(x_n)\in f\left[A\cap (a,a+\delta)\right]\subseteq (L-\epsilon,L+\epsilon)) \end{array}
\Rightarrow (\exists K\in\mathbb{N})(n\geq K\Rightarrow f(x_n)\in (L-\epsilon,L+\epsilon)).
-----------------------------------
(\Leftarrow): \lim\limits_{x\to a^+}f(x)\neq L olsun.
\lim\limits_{x\to a^+}f(x)\neq L\Rightarrow (\exists \epsilon>0)(\forall\delta >0)(A\cap (a,a+\delta)\nsubseteq f^{-1}[(L-\epsilon,L+\epsilon)])
\Rightarrow (\exists \epsilon>0)(\forall n\in\mathbb{N})\left(A\cap \left(a,a+\frac1n\right)\nsubseteq f^{-1}[(L-\epsilon,L+\epsilon)]\right)
\Rightarrow (\exists \epsilon>0)(\forall n\in\mathbb{N})\left(\exists x_n\in A\cap \left(a,a+\frac1n \right)\right)(f(x_n)\notin (L-\epsilon,L+\epsilon))
\Rightarrow \left(\exists (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a)(f(x_n)\nrightarrow L).
-----------------------------------
NOT:
\left[\left(\forall (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a\Rightarrow f(x_n)\to L)\right] \Rightarrow \left[\lim\limits_{x\to a}f(x)=L\right]
\equiv
\left[\lim\limits_{x\to a^+}f(x)= L\right]'\Rightarrow \left[\left(\forall (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a\Rightarrow f(x_n)\to L)\right]'
\equiv
\lim\limits_{x\to a^+}f(x)\neq L\Rightarrow \left(\exists (x_n)\in (A\cap (a,\infty))^{\mathbb{N}}\right)(x_n\to a)(f(x_n)\nrightarrow L)
-----------------------------------