Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
3.4k kez görüntülendi

image

Merhabalar,

Hocalarım ve arkadaşlarımın ilgisini çekebilecek güzel bir sayma problemi buldum, 

(Bunun benzeri ama $n$'nin çok daha büyük olduğu bir soruyu çözmeye çalışırken hazırlanmak veya örnek görmek için bir kaynak bulurken çok zorlandığım için burada da paylaşıyorum, ayrıca bu tip bir problemi cevaplandıran bir Türkçe kaynak bulamadım (maalesef):( ) 

''Şekildeki eşkenar üçgenlerden oluşturulan üçgende kaç tane paralelkenar vardır?''sorusundan türetilmiş bir soru.

Şekildeki paralelkenar sayısının $15$ olduğunu farkedelim ve bunu bir kenarda kaç üçgen tabanı olduğunu belirten bir $n$ sayısı için $f(n)$ olarak bağlayalım. Mesela bu şekil için $n=3$ ve $f(3)=15$'tir. 

$1)f(3)=15$ olduğunu gösteriniz.

$2)f(n)$ için genel bir formül bulunuz.


Orta Öğretim Matematik kategorisinde (895 puan) tarafından 
tarafından düzenlendi | 3.4k kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme
Herhangi bir paralelkenarın kenarları büyük üçgenin $2$ ya da $3$ kenarına paralel olacaktır. O zaman saymaya kenarları alt kenara paralel olmayan paralelkenarlardan başlayalım.( Pek akıcı değil biliyorum) Büyük üçgenin alt kenarı $n$ sayısını $n+2$ yapacak şekilde uzatılır (aşağıdaki şekilde görüldüğü üzere) , ayrıca paralelkenarın kenarları bir köşesi yeni kenarı kesene kadar uzatılır. Bu bize birebir eşleme sonucu $4$ nokta verir;(şekilde görüldüğü gibi) 


image
Eğer ilk üçgenimizde $n$ eşkenar üçgen tabanlı kenar varsa, yeni üçgenimizde $n+2$ eşkenar üçgen tabanlı kenar olur. Bu da $n+2$'lik kenardan $4$ nokta seçeceğimiz anlamına gelir, bunun için $\dbinom{n+2}{4}$ deriz, diğer $3$ kenar için de aynı durum tezahür edeceği için $$f(n)=3\dbinom{n+2}{4}$$ bulunur

Q.E.D...

(895 puan) tarafından 
19,472 soru
21,197 cevap
71,211 yorum
28,791 kullanıcı