T1) x∈X olsun.
x∈X(b1)}⇒x∈X=⋃B⇒(∃B∈B)(x∈B⊆X)/X∈τ.
[x∈∅⏟0⇒(∃B∈B)(x∈B⊆∅)⏟p]≡1.
O halde ∅∈τ olur.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T2) A1,A2∈τ ve x∈A1∩A2 olsun.
x∈A1∩A2⇒(x∈A1)(x∈A2)A1,A2∈τ}⇒(∃B1∈B)(∃B2∈B)(x∈B1⊆A1)(x∈B2⊆A2)
⇒(B1,B2∈B)(x∈B1∩B2⊆A1∩A2)(b2)}⇒(∃B3∈B)(x∈B3⊆B1∩B2⊆A1∩A2).
O hlade A1∩A2∈τ olur.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T3) A⊆τ ve x∈⋃A olsun.
x∈⋃AA⊆τ}⇒(∃A∈A)(x∈A∈τ)⇒(∃B∈B)(x∈B⊆A⊆⋃A)
O halde ⋃A∈τ olur.