Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
580 kez görüntülendi

$(X,\tau_1),(Y,\tau_2)$ topolojik uzaylar olmak üzere

$$(A\subseteq X)(B\subseteq Y)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 580 kez görüntülendi

Bu linkteki bilgiden faydalanabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme

$\left.\begin{array}{ccc} (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\subseteq A)(B^{\circ}\subseteq B)\Rightarrow A^{\circ}\times B^{\circ}\subseteq A\times B\Rightarrow (A^{\circ}\times B^{\circ})^{\circ}\subseteq (A\times B)^{\circ}\\ \\ (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\in\tau_1)(B^{\circ}\in\tau_2)\Rightarrow A^{\circ}\times B^{\circ}\in\tau_1\star\tau_2\Rightarrow (A^{\circ}\times B^{\circ})^{\circ} =A^{\circ}\times B^{\circ} \end{array}\right\}\Rightarrow A^{\circ}\times B^{\circ}\subseteq (A\times B)^{\circ}\ldots (1)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_1:X\times Y\to X, \pi_1(x,y)=x \,\ (\tau_1\star\tau_2\mbox{ - }\tau_1) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_1[(A\times B)^{\circ}]\in\tau_1\Rightarrow\left(\pi_1[(A\times B)^{\circ}]\right)^{\circ}=\pi_1[(A\times B)^{\circ}]\ldots (2)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq \pi_1[A\times B]=A\Rightarrow (\pi_1[(A\times B)^{\circ}])^{\circ}\subseteq A^{\circ}\ldots (3)$

$(2),(3)\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq  A^{\circ}\ldots (4)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_2:X\times Y\to Y, \pi_2(x,y)=y \,\ (\tau_1\star\tau_2\mbox{ - }\tau_2) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_2[(A\times B)^{\circ}]\in\tau_2\Rightarrow\left(\pi_2[(A\times B)^{\circ}]\right)^{\circ}=\pi_2[(A\times B)^{\circ}]\ldots (5)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq \pi_2[A\times B]=B\Rightarrow (\pi_2[(A\times B)^{\circ}])^{\circ}\subseteq B^{\circ}\ldots (6)$

$(5),(6)\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq  B^{\circ}\ldots (7)$

$(4),(7)\Rightarrow (A\times B)^{\circ}\overset{?}{\subseteq} \pi_1[(A\times B)^{\circ}]\times\pi_2[(A\times B)^{\circ}]\subseteq A^{\circ}\times B^{\circ}\ldots (8)$


$$(1),(8)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}.$$

Not : Son "?" işaretinin gerekçesi yorumdaki linkte mevcut. Diğer "?" işaretlerinin olduğu yerlerde de yine kafa yorulmasının faydalı olacağını düşünüyorum.

(11.5k puan) tarafından 
tarafından düzenlendi
20,293 soru
21,832 cevap
73,527 yorum
2,664,407 kullanıcı