Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
462 kez görüntülendi

$(X,\tau_1),(Y,\tau_2)$ topolojik uzaylar olmak üzere

$$(A\subseteq X)(B\subseteq Y)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.4k puan) tarafından  | 462 kez görüntülendi

Bu linkteki bilgiden faydalanabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme

$\left.\begin{array}{ccc} (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\subseteq A)(B^{\circ}\subseteq B)\Rightarrow A^{\circ}\times B^{\circ}\subseteq A\times B\Rightarrow (A^{\circ}\times B^{\circ})^{\circ}\subseteq (A\times B)^{\circ}\\ \\ (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\in\tau_1)(B^{\circ}\in\tau_2)\Rightarrow A^{\circ}\times B^{\circ}\in\tau_1\star\tau_2\Rightarrow (A^{\circ}\times B^{\circ})^{\circ} =A^{\circ}\times B^{\circ} \end{array}\right\}\Rightarrow A^{\circ}\times B^{\circ}\subseteq (A\times B)^{\circ}\ldots (1)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_1:X\times Y\to X, \pi_1(x,y)=x \,\ (\tau_1\star\tau_2\mbox{ - }\tau_1) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_1[(A\times B)^{\circ}]\in\tau_1\Rightarrow\left(\pi_1[(A\times B)^{\circ}]\right)^{\circ}=\pi_1[(A\times B)^{\circ}]\ldots (2)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq \pi_1[A\times B]=A\Rightarrow (\pi_1[(A\times B)^{\circ}])^{\circ}\subseteq A^{\circ}\ldots (3)$

$(2),(3)\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq  A^{\circ}\ldots (4)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_2:X\times Y\to Y, \pi_2(x,y)=y \,\ (\tau_1\star\tau_2\mbox{ - }\tau_2) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_2[(A\times B)^{\circ}]\in\tau_2\Rightarrow\left(\pi_2[(A\times B)^{\circ}]\right)^{\circ}=\pi_2[(A\times B)^{\circ}]\ldots (5)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq \pi_2[A\times B]=B\Rightarrow (\pi_2[(A\times B)^{\circ}])^{\circ}\subseteq B^{\circ}\ldots (6)$

$(5),(6)\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq  B^{\circ}\ldots (7)$

$(4),(7)\Rightarrow (A\times B)^{\circ}\overset{?}{\subseteq} \pi_1[(A\times B)^{\circ}]\times\pi_2[(A\times B)^{\circ}]\subseteq A^{\circ}\times B^{\circ}\ldots (8)$


$$(1),(8)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}.$$

Not : Son "?" işaretinin gerekçesi yorumdaki linkte mevcut. Diğer "?" işaretlerinin olduğu yerlerde de yine kafa yorulmasının faydalı olacağını düşünüyorum.

(11.4k puan) tarafından 
tarafından düzenlendi
20,219 soru
21,752 cevap
73,354 yorum
1,988,378 kullanıcı