ilk olarak $n\ge 1$ icin $$\left|r+\frac1n\right| \le |r|+\frac{1}{n}$$ her zaman saglanir. Bir $N$ degeri bulabiliriz ki $n>N$ oldugunda $$|r|+\frac1n<|r|+\frac1N<1$$ saglanir. (Bunu kolaycana gosterebiliriz.) $$|r|+\frac1N :=c$$ olarak tanimlayalim. Elimizde $n>N$ icin $$0 \le \left|\left(r+\frac1n\right)^n\right| \le c^n$$ olur. $$\lim\limits_{n\to \infty} 0= \lim\limits_{n \to \infty} c^n=0$$ oldugundan, sikistirma teoremi geregi, $$\lim\limits_{n\to \infty} \left|\left(r+\frac1n\right)^n\right|=0 $$ olur ve dolayisiyla $$\lim\limits_{n\to \infty} \left(r+\frac1n\right)^n=0 $$ olur. (mutlak degeri sifira giden bir dizinin kendisi de sifira gider).