Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
417 kez görüntülendi

Bu sorudaki integralde $x=a\cos u$ dönüşümü yapınca çıkıyor bu integral. Üzerinde düşünmeme rağmen ilerleme kaydedemedim halen.

Lisans Matematik kategorisinde (2.9k puan) tarafından  | 417 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$$a>b \,\ \text{ ve } \,\ k^2=1-\left(\frac{b}{a}\right)^2$$ olmak üzere

$$\int\sqrt{b^2\sin^2 u+a^2\cos^2u}du$$

$$=$$

$$\int\sqrt{b^2\sin^2u+a^2(1-\sin^2u)}du$$

$$=$$

$$\int\sqrt{a^2-(a^2-b^2)\sin^2u)}du$$

$$=$$

$$a\int\sqrt{1-\left( \underset{k^2}{\underbrace{1-\left(\frac{b}{a}\right)^2}}\right) \sin^2u}du$$

$$=$$

$$ a\int\sqrt{1-k^2\sin^2u}du $$

Bu da ikinci tip eliptik integral. Bunu bilinen elemanter fonksiyonlar cinsinden integre edemezsin.

(11.4k puan) tarafından 

Burada iki tür eliptik integrallere dair bazı bilgiler mevcut.

20,240 soru
21,759 cevap
73,404 yorum
2,072,838 kullanıcı