Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
598 kez görüntülendi
Lisans Matematik kategorisinde (20 puan) tarafından 
tarafından düzenlendi | 598 kez görüntülendi

Ödev sorularınızı öncelikle kendiniz yapmaya çalışın arkadaşlar

2 Cevaplar

0 beğenilme 0 beğenilmeme
En İyi Cevap

Türevin limit tanımı ifade edelim önce:

$f:R$->$R$ için $f(x)$ fonksiyonu verildiğinde tanım kümesindeki bir $x$ noktası için 

$lim_{h->{0}}[\frac{f(x+h)-f(x)}{h}]$=$f'(x)$  

Şimdi bunu $f(x)$=$\frac{1}{\sqrt[3]{x}}$ fonksiyonuna uygulayalım.

$f :$ ($R$-{${0}$})->$R$ için

$=>$ $lim_{h->{0}}{\frac{f(x+h)-f(x)}{h}}$=$lim_{h->{0}}{\frac{\frac{1}{\sqrt[3]{x+h}}-{\frac{1}{\sqrt[3]{x}}}}{h}}$=$lim_{h->{0}}{\frac{-\sqrt[3]{x+h}+{\sqrt[3]{x}}}{h{\sqrt[3]{x+h}}{\sqrt[3]{x}}}}$

$=>$ $lim_{h->{0}}{\frac{-\sqrt[3]{x+h}+{\sqrt[3]{x}}}{h{\sqrt[3]{x+h}}{\sqrt[3]{x}}}}$=$lim_{h->{0}}{\frac{(-\sqrt[3]{x+h}+{\sqrt[3]{x}})[{\sqrt[3]{(x+h)^2}}+{\sqrt[3]{(x+h)(x)}}+{\sqrt[3]{(x)^2}}]}{(h{\sqrt[3]{x+h}}{\sqrt[3]{x}})[{\sqrt[3]{(x+h)^2}}+{\sqrt[3]{(x+h)(x)}}+{\sqrt[3]{(x)^2}}]}}$

=$lim_{h->{0}}{\frac{-x-h+x}{h{\sqrt[3]{x+h}}{\sqrt[3]{x}}[{\sqrt[3]{(x+h)^2}}+{\sqrt[3]{(x+h)(x)}}+{\sqrt[3]{(x)^2}}]}}$=$lim_{h->{0}}{\frac{-h}{h{\sqrt[3]{x+h}}{\sqrt[3]{x}}[{\sqrt[3]{(x+h)^2}}+{\sqrt[3]{(x+h)(x)}}+{\sqrt[3]{(x)^2}}]}}$

=$lim_{h->{0}}{\frac{-1}{{\sqrt[3]{x+h}}{\sqrt[3]{x}}[{\sqrt[3]{(x+h)^2}}+{\sqrt[3]{(x+h)(x)}}+{\sqrt[3]{(x)^2}}]}}$=$lim_{h->{0}}{\frac{-1}{{\sqrt[3]{x}}{\sqrt[3]{x}}[{\sqrt[3]{(x)^2}}+{\sqrt[3]{(x)(x)}}+{\sqrt[3]{(x)^2}}]}}$=${\frac{-1}{3{\sqrt[3]{x^4}}}}$ olur.

(470 puan) tarafından 
tarafından düzenlendi
0 beğenilme 0 beğenilmeme
Murad Hocam aslinda yaptimda dogru mu degil mi emin degilim :) bu arada ece hocama tesekkurler
(20 puan) tarafından 
tarafından düzenlendi
wolframalpha.com'dan kontrol edebilirsiniz.
20,275 soru
21,807 cevap
73,489 yorum
2,449,397 kullanıcı