r=sec\theta ve y=tan\theta
olduğundan, r^2-y^2=\dfrac{1-sin^2\theta}{cos^2\theta} olur ve,
\lim\limits_{\theta \to (\pi/2)^-}\dfrac{1-sin^2\theta}{cos^2\theta}=0/0 , cos^2\theta=1-sin^2\theta olduğundan limit 1 dir ve kesin olsun diye l'hôpital alalım,
\lim\limits_{\theta \to (\pi/2)^-}\dfrac{1-sin^2\theta}{cos^2\theta}=0/0\quad\quad \quad \underbrace{\Longrightarrow}_{l'hôpital uygularız}\quad\quad \quad\lim\limits_{\theta \to (\pi/2)^-}\dfrac{-2sin\theta.cos\theta}{-2cos\theta.sin\theta}=1