$A\times A=A^2=\{(5,5),(5,6),...,(13,13)\}$ olup, $s(A^2)=81$ dir. Bu sıralı ikililer içerisinde, toplamları $6$ ile tam bölünen ve birinci bileşeni ile ikinci bileşeni aynı olan $(a,a)$ şeklindekilerden $\beta$'da birer tane, bileşenleri farklı olan $(a,b)$ şeklindekilerden ise $ (b,a)$ da düşünüldüğünde ikişer tanedir. Dolayısıyla bu koşulu sağlayanların sayısı yani $s(\beta)=2.s(\{(5,7),(5,13),(6,12),(7,11),(8,10),(11,13)\}+s\{(6,6),(9,9),(12,12)\}=15$ dür.