Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
867 kez görüntülendi

$f(x)=2x-x^2$ kuralı ile verilen $f:[1,\infty)\rightarrow \mathbb{R}$ fonksiyonunun iki tane sol tersini bulunuz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 867 kez görüntülendi

2 Cevaplar

2 beğenilme 0 beğenilmeme
En İyi Cevap

Fonksiyon birebir ama örten değil (Görüntü kümesi: $(-\infty,1]$. Bu nedenle, sol ters fonksiyon, görüntüde olanları geldiği noktaya göndermek zorunda ama görüntüde olmayanları dilediğimiz gibi gönderebiliriz)

$g_1(x)=\left\{\begin{array}{ll}1+\sqrt{1-x} & x\leq1\\1&  x>1\end{array}\right.$  ve $g_2(x)=\left\{\begin{array}{ll}1+\sqrt{1-x} & x\leq1\\2&  x>1\end{array}\right.$ 

Her $x\in[1,+\infty)$ için $(g_1\circ f)(x)=x$ ve $(g_2\circ f)(x)=x$ olur.

(6.2k puan) tarafından 
tarafından seçilmiş

Aynen dediğiniz gibi sayın hocam

1 beğenilme 0 beğenilmeme

  Verilen fonksiyonun tersi $f^{-1}:\mathbb{R}\rightarrow[1,\infty)$ dir.

$x=2f^{-1}(x)-(f^{-1}(x))^2$

$(f^{-1}(x))^2-2f^{-1}(x)+x=0$ Bu denklemi $f^{-1}$ e  göre çözersek;

  $f^{-1}(x)=\frac{4\pm\sqrt{4-4x}}{2} = 2\pm\sqrt{1-x}$,      $(x\geq1)$ olacaktır.




(19.2k puan) tarafından 

Bulduğunuz bağıntı fonksiyon değil.

20,280 soru
21,813 cevap
73,492 yorum
2,482,529 kullanıcı