\lim\limits_{x\to 9}\frac{\sqrt{6+\sqrt{6+\sqrt{x}}}-3}{x-9}
=
\lim\limits_{x\to 9}\frac{\sqrt{6+\sqrt{6+\sqrt{x}}}-3}{x-9}\cdot\frac{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}
=
\lim\limits_{x\to 9}\frac{\sqrt{6+\sqrt{x}}-3}{x-9}\cdot\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}
=
\lim\limits_{x\to 9}\frac{\sqrt{6+\sqrt{x}}-3}{x-9}\cdot\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}\cdot\frac{\sqrt{6+\sqrt{x}}+3}{\sqrt{6+\sqrt{x}}+3}
=
\lim\limits_{x\to 9}\frac{\sqrt{x}-3}{x-9}\cdot\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}\cdot\frac{1}{\sqrt{6+\sqrt{x}}+3}
=
\lim\limits_{x\to 9}\frac{\sqrt{x}-3}{x-9}\cdot\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}\cdot\frac{1}{\sqrt{6+\sqrt{x}}+3}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+3}
=
\lim\limits_{x\to 9}\frac{x-9}{x-9}\cdot\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}\cdot\frac{1}{\sqrt{6+\sqrt{x}}+3}\cdot\frac{1}{\sqrt{x}+3}
=
\lim\limits_{x\to 9}\frac{1}{\sqrt{6+\sqrt{6+\sqrt{x}}}+3}\cdot\frac{1}{\sqrt{6+\sqrt{x}}+3}\cdot\frac{1}{\sqrt{x}+3}
=
\ldots