Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
611 kez görüntülendi

A) α=0 veya β=π/2

B)α=0 veya β=π/4

C)α=π/2 veya β =0

D)α=π/2 veya β=π/2

E))α=π/4 veya  β =0


****C

Orta Öğretim Matematik kategorisinde tarafından 
tarafından düzenlendi | 611 kez görüntülendi

$$\sin(\alpha-\beta)=\sin\alpha .\sin\beta$$

$$\Rightarrow$$

$$\sin\alpha .\cos\beta-\cos\alpha .\sin\beta=\sin\alpha .\sin\beta$$

$$\Rightarrow$$

$$\cot\alpha-\cot\beta=1$$

Bu işe yarar mı?

Neden 1e eşit?

Biraz düşün bakalım neden $1$'e eşit olmuş.

Ben bu sorunun seçeneklerindeki bağlacın "veya " olmasına takıldım. Örneğin doğru seçenek olarak verilen $C$ seçeneği de doğru olamaz .Çünkü "veya" bağlacı aşağıdaki üç durumu da sağlar.

1) $\alpha=\pi/2 ,\quad \beta\neq 0$ ,

2) $\alpha \neq\pi/2 ,\quad \beta= 0$ ,

3) $\alpha=\pi/2 ,\quad \beta= 0$ ,

Bu koşulda 1.) de eşitliğin solu $1$ sağı $0$ olur,2.) de eşitliğin solu değişir fakat sağı sıfırdır, 3.) de ise eşitliğin solu $1$ sağı ise sıfırdır. Bence bu ve diğer seçeneklerin hiç birisi doğru olmaz. Ancak bu eşitliği bu aralıkta sağlayan açısal değerler belki bulunabilir.

20,284 soru
21,823 cevap
73,508 yorum
2,569,959 kullanıcı