$\sum _{n=1}^{\infty }\dfrac {n\ln n} {\sqrt {n^{3}+1}}$
İpucu: $\frac{n\ln n}{\sqrt{n^3+1}}\geq\frac{n\ln n}{\sqrt{n^3+n^3}} =\frac{n\ln n}{2^{\frac32}n^{\frac32}}=\left(\frac12\right)^{\frac32}\frac{\ln n}{\sqrt n}>\frac1{\sqrt8}\frac1{n^{\frac12}}\quad (n\geq3)$