Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi
$$\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n=e \textrm{ ise }\lim_{n \to \infty}{\frac{n+1}{\sqrt[n]{n!}}}=e$$ olduğunu gösteriniz
Lisans Matematik kategorisinde (1.8k puan) tarafından 
tarafından yeniden kategorilendirildi | 1k kez görüntülendi

2 Cevaplar

1 beğenilme 0 beğenilmeme

$\lim _{n\rightarrow \infty }\dfrac {a_{n+1}} {a_{n}}=L\Rightarrow \lim _{n\rightarrow \infty }\sqrt [n] {a_{n}}=L$   ifadesini kullanarak sonuca ulaştım.

$a_{n}=\dfrac {\left( n+1\right) ^{n}} {n!}$  olsun.

$\dfrac {a_{n+1}} {a_{n}}=\dfrac {\left( n+2\right) ^{n+1}} {\left( n+1\right) !}\dfrac {n!} {\left( n+1\right) ^{n}}=\left( \dfrac {n+2} {n+1}\right) ^{n+1} =\left( 1+\dfrac {1} {n+1}\right) ^{n+1}$

En son bulduğumuz ifadenin limitini aldığımızda yani   $\lim _{n\rightarrow \infty }\left( 1+\dfrac {1} {n+1}\right) ^{n+1}=e$ olmasından dolayı   $\lim _{n\rightarrow \infty }\dfrac {n+1} {\sqrt [n] {n!}}=e$  olduğunu söyleyebiliriz. 


(57 puan) tarafından 

Güzel çözüm, 

$\lim_{n\rightarrow \infty }\frac{1+\frac{1}{2}+\cdots +\frac{1}{n}}{\ln n}$ limitini hesaplayınız..
1 beğenilme 0 beğenilmeme

Bildiği gibi öğencilerinin limit hesabındaki en büyük

yardımcısı L'Hospital kuralıdır. Ne yazık ki dizilerin limitinin

hesabında bu kural çoğu kez bir işe yaramaz. Fakat dizilerde

de bunun bir karşılığı vardır.


Teorem. $\left( a_{n}\right) $ ve $\left( b_{n}\right) $ iki dizi ,

$\left( b_{n}\right) $ kesin artan  ve

 $\lim_{n\rightarrow \infty}b_{n}=\infty $ olsun. Eğer 

$\lim_{n\rightarrow \infty }\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L$ ise 

$\lim_{n\rightarrow \infty }\frac{a_{n}}{b_{n}}=L$ dir.


Bu teoremde $L=\pm \infty $ da olabilir. Kanıt için Ali Nesin, Analiz

I, örnek 7.38' e bakınız. Link:

https://matematikkoyu.org/e-kutuphane/ders-notlari/analiz\_1.pdf


Şimdi bu kuralı uygulayalım. $y_{n}=\frac{n+1}{\sqrt[n]{n!}}$

olsun. 

$\ln y_{n}=\frac{1}{n}\left( n\ln \left( n+1\right)-\sum\limits_{k=1}^{n}\ln k\right) $ dır.


$a_{n}=n\ln \left( n+1\right) -\sum\limits_{k=1}^{n}\ln k$ ve $b_{n}=n$ ise

$\left( b_{n}\right) $ kesin artan ve

 $\lim_{n\rightarrow \infty}b_{n}=\infty $ dir. Ayrıca $b_{n+1}-b_{n}=1$ ve


$a_{n+1}-a_{n}=\left( n+1\right) \ln \left( n+2\right) -\ln \left(n+1\right) -n\ln \left( n+1\right) $

$=\ln \left( 1+\frac{1}{n+1}\right)^{\left( n+1\right) }\rightarrow \ln e=1$.


 


O halde $\lim_{n\rightarrow \infty }\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=1$

olduğundan $\lim_{n\rightarrow \infty }\frac{a_{n}}{b_{n}}=1$ olur. Burdan $\lim_{n\rightarrow \infty }y_{n}=e$ elde edilir.


Bu problemi çözen bir başka, kanımca önemli, teorem şöyle diyor.


Teorem. $\left( x_{n}\right) $ pozitif terimli bir dizi ve  $\lim_{n\rightarrow \infty }\frac{x_{n+1}}{x_{n}}=L$  ise $\lim_{n\rightarrow\infty }\sqrt[n]{x_{n}}=L$ dir.


Bu teorem ilk teorem kullanılarak kanıtlanabilir. Bunun için $a_{n}=\ln x_{n}$ ve $b_{n}=n$ alınabilir.

Bu sözü edilen son  teorem kullanılarak bir cevap tersinin tersi tarafından zaten verilmiş 

(541 puan) tarafından 
teşekkürler oldukça açıklayıcı olmuş
20,289 soru
21,832 cevap
73,518 yorum
2,635,196 kullanıcı