Processing math: 100%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
2 beğenilme 0 beğenilmeme
1.9k kez görüntülendi

R'den R'ye, doğrusal olmayan (yani grafiği bir doğru olmayan), her yerde türevli, birebir bir fonksiyon var mıdır ki rasyonel sayıları rasyonellere, irrasyonelleri de irrasyonellere götürsün

Bonus: Ne kadar çok türevlenebilirse o kadar iyi cevap sayılacak!

(Şu sorudan esinlenerek...)

Orta Öğretim Matematik kategorisinde (57 puan) tarafından 
tarafından düzenlendi | 1.9k kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme

xx+1

(3.7k puan) tarafından 

"...doğrusal olmayan (yani grafiği bir doğru olmayan)..."

Bu bir dogru.

f(x)=x+1 kuralı ile verilen f:RR fonksiyonu

f(x+y)=x+y+1x+y+2=f(x)+f(y)

olduğundan lineer (doğrusal) değildir.

Orta öğretim düzeyindeki bir soruya "afin lineer olmayan" ifadesini koymak istemedim. Bu soruda doğrusal demek, grafiği bir doğru olmayan demek. Soruya buyrun :)

Geldik hocam :-)

x<0 icin xx+1, x0 icin x2x+1.

Benim de aklıma gelen cevap bu ya da bunun türevleri.

f(x)={x,x<02x,x0

doğrusal değil, ama 0'da türevli, birebir vs.

Soruyu buna göre düzelttim (sürekli yerine türevli). Teşekkür.

Benimki 1 noktacikta turevsiz. O kadar olur :)

O zaman soruyu şöyle de düzelteyim: Ne kadar az türevlenebilirse o kadar kötü cevap :)

soru sormak bazen daha zor, cevap yazmak bir dakika. 

Ben su anki soruya yanit olmayan yanitimi kaldirmayayim da buradaki konusmalar silinmesin.

20,333 soru
21,889 cevap
73,624 yorum
3,096,604 kullanıcı