Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
304 kez görüntülendi

$$\large\int_0^\frac{\pi}{12}\:\ln\tan\:x\:dx$$

İntegralini çözün.

Lisans Matematik kategorisinde (1.1k puan) tarafından  | 304 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

İntegralimiz :

$$\int_0^\frac{\pi}{12}\:\ln\tan\:x\:dx$$

$\ln\tan\:x$ ifadesini sonsuz seri ile yazalım.

$$-2\int_0^\frac{\pi}{12}\:\sum_{k=0}^\infty\:\frac{\cos\big(4k+2\big)x}{2k+1}\:dx$$
Seri düzgün yakınsak olduğundan , integral ile toplam sembolünün yerini değiştirebilriz.
$$-2\:\sum_{k=0}^\infty\:\int_0^\frac{\pi}{12}\:\:\frac{\cos\big(4k+2\big)x}{2k+1}\:dx$$
İntegrali çözelim.
$$-\:\sum_{k=0}^\infty\:\frac{\sin\Big(\frac{2k+1}{6}\Big)\pi}{(2k+1)^2}$$
Serinin bir kaç terimini yazalım ve sadeleştirelim.
$$-\frac{\Big(\frac{1}{2}\Big)}{1^2}-\frac{1}{3^2}-\frac{\Big(\frac{1}{2}\Big)}{5^2}+\frac{\Big(\frac{1}{2}\Big)}{7^2}+\frac{1}{9^2}+\frac{\Big(\frac{1}{2}\Big)}{11^2}...$$
$$-\frac{\Big(\frac{1}{2}\Big)}{1^2}-\frac{\Big(\frac{3}{2}-\frac{1}{2}\Big)}{3^2}-\frac{\Big(\frac{1}{2}\Big)}{5^2}+\frac{\Big(\frac{1}{2}\Big)}{7^2}+\frac{\Big(\frac{3}{2}-\frac{1}{2}\Big)}{9^2}+\frac{\Big(\frac{1}{2}\Big)}{11^2}...$$
İfadeyi iki ayrı toplam sembolü ile yazalım.
$$-\frac{1}{2}\:\sum_{k=0}^\infty\:\frac{(-1)^k}{(2k+1)^2}-\frac{3}{2}\:\sum_{k=0}^\infty\:\frac{(-1)^k}{(6k+3)^2}$$
Sadeleştirelim.
$$-\frac{2}{3}\:\sum_{k=0}^\infty\:\frac{(-1)^k}{(2k+1)^2}$$
Bu seri özel bir seridir ve catalan sabiti'ne eşittir.
$$\large\color{#A00000}{\boxed{\int_0^\frac{\pi}{12}\:\ln\tan\:x\:dx=-\frac{2}{3}\:G}}$$

(1.1k puan) tarafından 
20,256 soru
21,783 cevap
73,446 yorum
2,284,761 kullanıcı