(1+x)n=∑nk=0(nk)xk
=(n0)x0+(n1)x1+(n2)x2+(n3)x3+⋯+(nn−1)xn−1+(nn)xn
=1+n1!x+n(n−1)2!x2+n(n−1)(n−2)3!x3+⋯+(nn−1)xn−1+(nn)xn
x=1n koyalim
(1+1n)n=1+11!+(n−1)2!n+(n−1)(n−2)3!n2+⋯+(nn−1)(1n)n−1+(nn)(1n)n
=1+11!+12!+−12!n+13!+−33!n+23!n2+⋯+(nn−1)(1n)n−1+(nn)(1n)n
e=limn→∞(1+1n)n =limn→∞(1+11!+12!+−12!n+13!+−33!n+23!n2+⋯+(nn−1)(1n)n−1+(nn)(1n)n)
=1+11!+12!+13!+⋯=∑∞k=01k!