Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
259 kez görüntülendi
$\sqrt{\dfrac{3^8+5^8+34^4}2} $ sayısını hesaplayınız (Çok ünlü bir üniversitenin giriş sınavında sorulduğu belirtilmiş)
Orta Öğretim Matematik kategorisinde (6.2k puan) tarafından  | 259 kez görüntülendi

2 Cevaplar

2 beğenilme 0 beğenilmeme
$3^8+5^8+34^4=9^4+25^4+34^4=9^4+25^4+(9+25)^4$ olur.

Bundan sonra, daha genel bir eşitlik elde edeceğiz. $a,b\in\mathbb{R}$ olsun.

$\frac12\left(a^4+b^4+(a+b)^4\right)=\frac12(a^4+b^4+a^4+4a^3b+6a^2b^2+4ab^3+b^4)$

 $=(a^2)^2+(b^2)^2+(ab)^2+2(a^2b^2+a^3b+ab^3)=(a^2+b^2+ab)^2$

Bu eşitlikten $(\forall a,b\in\mathbb{R}$ için $a^2+b^2+ab\geq0$ olduğundan$)$,

$\sqrt{\dfrac{a^4+b^4+(a+b)^4}2}=a^2+b^2+ab$

$ \sqrt{\dfrac{3^8+5^8+34^4}2}=9^2+25^2+9\cdot25=931$
(6.2k puan) tarafından 
$\forall a,b\in\mathbb{R}$ için $a^2+b^2+ab\geq0$ olduğu şöyle görülebilir:
$ab\geq0$ ise
$a^2+b^2+ab\geq0$ apaçıktır.
$ab<0$ ise ($-ab>0$ olur)
$(a+b)^2\geq0\Rightarrow a^2+b^2+ab\geq-ab\Rightarrow a^2+b^2+ab>0$ olur.
Sorunun kaynağı nedir hocam?
Youtube da biri (hatırladığım kadarı ile,) "Cambridge Üniversitesi Matematik Bölümü giriş sınavı sorusu" diyerek çözmüş (bu benim çözümüm, oradaki çözümü görmedim, buna benzerdir sanırım). Tekrar arayınca bulamadım. Bulabilirsem linkini yazarım.
2 beğenilme 0 beğenilmeme
\begin{align*} 3^8+5^8+34^4&=9^4+25^4+(9+25)^4\\ &=9^4+(16+9)^4+(9+16+9)^4\\ &=9^4+(2\cdot 9+7)^4+(3\cdot 9+7)^4\\ &=9^4\cdot (1+(2+a)^4+(1+2+a)^4)\ ,\ a=7/9\\ &=9^4\cdot (1+a^4+(1+a)^4)\, , \,b=2+a=25/9\\ &=9^4\cdot \left(1+b^4+b^4+4b^3+6b^2+4b+1\right)\\ &=9^4\cdot \left(2+2b^4+4b^3+6b^2+4b\right)\\ \dfrac{3^8+5^8+34^4}{2}&=9^4\cdot \left(1+b^4+2b^3+3b^2+2b\right)\\ &\ldots \end{align*}

$1+b^4+2b^3+3b^2+2b=b^4+b^2+1+2(b^3+b^2+b)=(b^2+b+1)^2$  $$\sqrt{\dfrac{3^8+5^8+34^4}{2}}=81(625/81+25/9+81/81)=625+225+81=931$$
(3.4k puan) tarafından 
20,310 soru
21,866 cevap
73,586 yorum
2,842,219 kullanıcı