Ilgili soruda
$$\det (X + Y) = \det(X) + \det(Y)$$
denkleminin her $X,Y$ için doğru olmadığını gördük. Ama bu eşitlik "bazı" $X,Y$'ler için doğru. Kolaylık olsun diye $2 \times 2$'lik matrisleri düşünelim. Bu eşitlik bize $8$ bilinmeyenli bir polinom denklemi veriyor. Bu denklemin çözüm kümesinin geometrisi hakkında ne söyleyebiliriz? Mesela gıcır (smooth) mıdır (bunu ben görebiliyorum ama maksat soru olsun)? Başka geometrik özellikleri nelerdir? Bu özellikler büyük ihtimalle $n\times n$ durumuna genişletilebilir (mi?)