Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
400 kez görüntülendi

$\int_{0}^{1} \ arccosx   dx $


$\int_{0}^{ln2} \ x   e^{-x}     dx $

integrallerinin çözümü nasıl olur ?

Lisans Matematik kategorisinde (19 puan) tarafından 
tarafından düzenlendi | 400 kez görüntülendi

İlkinde $u=\arccos x$, $dV=dx$ ikincisinde $u=x$, $dV=e^{-x}\,dx$ ile devâm edebilirsin. İkinde kısmî integrasyondan sonra bir de değişken değiştirmen gerekecektir.

detay verebilir misiniz ?

1 cevap

0 beğenilme 0 beğenilmeme

1) $\arccos x=u\Rightarrow -\frac{dx}{\sqrt{1-x^2}}=du$ ve $dx=dV\Rightarrow x=V$ olur. Bu durumda, $$I_1=x\arccos x\Big|_0^1+\int_0^1\frac{x\,dx}{\sqrt{1-x^2}}=(0-0)-\frac{1}{2}\int_0^1\frac{(-2x)\,dx}{\sqrt{1-x^2}}=-\frac{1}{2}\int_1^0\frac{dt}{\sqrt{t}}=$$ $$=-\frac{1}{2}\frac{t^{1/2}}{1/2}\Bigg|_1^0=1$$ bulunur.

2) $x=u\Rightarrow dx=du$ ve $e^{-x}\,dx=dV\Rightarrow -e^{-x}=V$ olur. Böylece, $$I_2=-xe^{-x}\Big|_0^{\ln 2}+\int_0^{\ln 2}e^{-x}\,dx=-\frac{\ln 2}{2}-e^{-x}\Bigg|_0^{\ln 2}=-\frac{\ln 2}{2}-\left(\frac{1}{2}-1\right)=\frac{1-\ln 2}{2}$$ bulunur.

(1.4k puan) tarafından 
20,284 soru
21,823 cevap
73,508 yorum
2,570,933 kullanıcı