Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$\displaystyle\int_{0}^{\frac{\pi}{4}} 4\text{tan}^2x\ dx$ ifadesi neye eşittir?
0
beğenilme
0
beğenilmeme
470
kez görüntülendi
integral
analiz
12 Haziran 2015
Lisans Matematik
kategorisinde
xir16
(
18
puan)
tarafından
soruldu
12 Haziran 2015
Enis
tarafından
düzenlendi
|
470
kez görüntülendi
cevap
yorum
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
1
cevap
0
beğenilme
0
beğenilmeme
Ipucu: $tan^2 x+1=sec^2 x$.
12 Haziran 2015
Sercan
(
25.5k
puan)
tarafından
cevaplandı
ilgili bir soru sor
yorum
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
İlgili sorular
$\int \text{tan}(\text{tan}(x))dx$ integrali neye eşittir?
$f(x) =\begin{cases}\frac{1}{10^n}, & \text{ eğer } x \in(2^{-(n+1)},2^{-n}) \text{ ise}\\[2ex] 0, & \text{ eğer }x=0\text{ ise}\end{cases}$ ise $\int_{0}^{1} f(x)\;dx$
$\displaystyle\int_{0}^{\frac{\pi}{4}} \frac{\cos2x}{\cos^2x}dx$ integralinin değeri?
$\displaystyle\lim_{n\to\infty} \Big(\frac{1}{n}\sum_{k=1}^{n}2^{k/n}\Big)$ ifadesi neye eşittir?
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,284
soru
21,824
cevap
73,509
yorum
2,574,098
kullanıcı