Sav yanlistir.
Teorem: $A_{n\times n}$ kare matrisi tersinirdir ancak ve ancak $\text{Det}(A)\neq0$
$A $ ve $B$ $\quad n\times n$ tersinir matrisler olsun. $k_i\neq0\quad \forall \, i=1,2,\dots,n$ olmak uzere
$A=\left( \begin{array}{cc} k_1& &&0 \\ & k_2 \\& &\ddots\\0&&&k_n \end{array} \right)$
ve
$B=\left( \begin{array}{cc} -k_1& &&0 \\ & k_2 \\& &\ddots\\0&&&k_n \end{array} \right)$ kosegen matrislerini tanimlayalim.
$\text{Det}(A)=k_1k_2\cdots k_n\neq0 \implies A$ tersinirdir. Ayni sekilde,
$\text{Det}(B)=-k_1k_2\cdots k_n\neq0 \implies B$ tersinirdir.
Fakat $A+B=\left( \begin{array}{cc} k_1& &&0 \\ & k_2 \\& &\ddots\\0&&&k_n \end{array} \right)+\left( \begin{array}{cc} -k_1& &&0 \\ & k_2 \\& &\ddots\\0&&&k_n \end{array} \right)=\left( \begin{array}{cc} 0& &&0 \\ & 2k_2 \\& &\ddots\\0&&&2k_n \end{array} \right)$
$\text{Det}(A+B)=0\cdot2k_2\cdots 2k_n=0 \implies A+B$ tersinir degildir.