Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
159 kez görüntülendi

$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$  denklemini doğal sayılarda çözünüz.

İlgili soru

Orta Öğretim Matematik kategorisinde (1.9k puan) tarafından  | 159 kez görüntülendi

$x=y=z=3$ esitligi saglar..


Başka çözümler de var.

(x,y,z) bir çözüm ise (4,4,2),(4,2,4),(2,4,4) birer çözümdür.

(2,3,6) çözümü de var

Simetriden dolayı $(4,4,2)$ çözümünü vermek yeterli aslında. 

Bu soruya cevap verildiğini düşünüyorum. Sitede soru bulmak zor olduğundan hangi soru ve cevap altında olduğunu bilmiyorum. 

Soru sayısı arttıkça site arama motoru daha da kötü bir hal aldı. Anahtar kelime vs pek sallamıyor. Kendi sorularımı bile bulamıyorum. 

Bayağı bi aradım fakat göremedim aynısından. Ama x ve y lisi sorulmuş birkaç kere. Yine de belli olmaz. Yorumlarımıza da ulaşabilsek ilgilendiğimiz sorulara daha kolay erişebilirdik. 

1 cevap

0 beğenilme 0 beğenilmeme

$x\leq y\leq z$ varsayabiliriz. (daha sonra permütasyon ile tüm çözümleri buluruz)

$x>1$ olacağı kolay.

$x\geq3$ ise $x=y=z=3$ olmak zorunda. 

Öyleyse geriye sadece $x=2$ durumu kalır.

$x=2$ ise $\frac1y+\frac1z=\frac12$ olması gerekli ve yeterlidir.

Bu da $yz=2(y+z)$ olması demektir. Önceki sorudaki gibi:

$(y-2)(z-2)=4$ denklemine eşdeğerdir.

Bu da, $2\leq y\leq z$ olduğunu da göz önüne alarak,

$y-2=z-2=2$ ya da $y-2=1,z-2=4$ olmalıdır.

Bunlar da $y=z=4$ ve $y=3,z=6$ çözümlerini verir.

Sonuç olarak $x\leq y\leq z$ şeklindeki çözümler:

$(3,3,3),\ (2,4,4),\ (2,3,6)$ olur.

Bunların permütasyonları tüm çözümleri verir.

(4.9k puan) tarafından 
18,707 soru
20,904 cevap
68,471 yorum
20,769 kullanıcı