1) a)
∂f∂x=2(x−2)+2(x−2y2)=0(1)
∂f∂y=2(x−2y2)(−4y)=0(2)
(2)⟹y=0 veya x=2y2
(1)⟹y=0 ise 2(x−2)+2(x)=0⟹x=1
(1)⟹x=y2 icin cozum yok. O zaman kritik noktalarimiz
(2)x=1⟹2(1−2y2)(−4y)=0⟹y=0 veya y∓√22
(1)x=1⟹2(1−2)+2(1−2y2)=0⟹y=0
(1,0),(1,√22),(1,−√22) olur.
2) V=πr2h=20π. Maliyet M olsun. O zaman
M=(2πr2)10+(2πrh)8 olur. Mailyeti minimize etmemiz lazim. Oncelikle yukaridaki iliskiyi kullanarak bir M'yi bir degiskene dusurelim.
πr2h=20π⟹h=20r2, M'de yerine koyalaim.
M=(2πr2)10+(2πr20r2)8=20πr2+320πr
dMdr=40πr−320πr2=0
40πr3−320πr2=0⟹40πr3−320π=0⟹r3=8⟹r=2. r=2'nin gercekten maliyeti minimize eden deger oldugunu gostermek icin M″ isaretine bakilabilir veya birinci turevde tablo yapilabilir (r=0'i da goz onune alarak). Bunu size birakiyorum.
h=\dfrac{20}{2^2}=5
3) Once Newton metodunu 1 degiskenli fonksiyonlar icin hatirlayalim. Newton methodu, x_0 noktasini baslangic olarak alan ve itarasyon ile f(x)=0 fonsiyonun kokunu bulan bir metod.
x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}\qquad n=0,1,\dots
n=0:\qquad x_{1}=x_0-\dfrac{f(x_0)}{f'(x_0)}
Cok degiskenlilerde ise formul su haldedir. J=\left[ \begin{array}{ccc} \dfrac{\partial f_1}{\partial x_1} & \dots & \dfrac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial f_N}{\partial x_1} & \dots & \dfrac{\partial f_N}{\partial x_N}\\ \end{array} \right] Jacobian matrix olmak uzere
\mathbf{x}_{n+1}=\mathbf{x}_{n}-J(\mathbf{x}_{n})^{-1}f(\mathbf{x}_{n}) dir.
2 degiskenliler icin yazalim.
\left[ \begin{array}{c} x_{n+1} \\ y_{n+1} \\ \end{array} \right]=\left[ \begin{array}{c} x_{n} \\ y_{n} \\ \end{array} \right]-\left[ \begin{array}{cc} \dfrac{\partial f_1}{\partial x}( x_{n}) & \dfrac{\partial f_1}{\partial y}( x_{n}) \\ \dfrac{\partial f_2}{\partial x}(y_{n}) & \dfrac{\partial f_2}{\partial y}( y_{n}) \\ \end{array} \right]^{-1}\left[ \begin{array}{c} f_1( x_{n}) \\ f_2(y_{n}) \\ \end{array} \right]
Sizin sorunuza gelince, (x_0,y_0)=(1,1)
F(x,y)=\left[ \begin{array}{c} f_1(x,y) \\ f_2(x,y) \\ \end{array} \right]=\left[ \begin{array}{c} x^2+y^2+3 \\ -2x^2-\dfrac{1}{2}y^2 +2\\ \end{array} \right]
J=\left[ \begin{array}{cc} \dfrac{\partial f_1}{\partial x} & \dfrac{\partial f_1}{\partial y} \\ \dfrac{\partial f_2}{\partial x} & \dfrac{\partial f_2}{\partial y} \\ \end{array} \right]=\left[ \begin{array}{cc} 2x &2y \\ -4x & -y \\ \end{array} \right]
J^{-1}=\left[ \begin{array}{cc} -\dfrac{1}{6 x} & -\dfrac{1}{3 x} \\ \dfrac{2}{3 y} & \dfrac{1}{3 y} \\ \end{array} \right]
\left[ \begin{array}{c} x_{n+1} \\ y_{n+1} \\ \end{array} \right]=\left[ \begin{array}{c} x_{n} \\ y_{n} \\ \end{array} \right]-\left[ \begin{array}{cc} -\dfrac{1}{6 x}(x_n) & -\dfrac{1}{3 x} (x_n)\\ \dfrac{2}{3 y}(y_n) & \dfrac{1}{3 y}(y_n) \\ \end{array} \right]\left[ \begin{array}{c} f_1( x_{n}) \\ f_2(y_{n}) \\ \end{array} \right]
n=0: (x_0,y_0)=(1,1)
\left[ \begin{array}{c} x_{1} \\ y_{1} \\ \end{array} \right]=\left[ \begin{array}{c} x_0 \\ y_0 \\ \end{array} \right]-\left[ \begin{array}{cc} -\dfrac{1}{6 x}(x_0,y_0) & -\dfrac{1}{3 x} (x_0,y_0)\\ \dfrac{2}{3 y}(x_0,y_0) & \dfrac{1}{3 y}(x_0,y_0) \\ \end{array} \right]\left[ \begin{array}{c} f_1( x_0,y_0) \\ f_2(x_0,y_0) \\ \end{array} \right]
\left[ \begin{array}{c} x_{1} \\ y_{1} \\ \end{array} \right]=\left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right]-\left[ \begin{array}{cc} -\dfrac{1}{6 x}(1,1) & -\dfrac{1}{3 x} (1,1)\\ \dfrac{2}{3 y}(1,1) & \dfrac{1}{3 y}(1,1) \\ \end{array} \right]\left[ \begin{array}{c} f_1( 1,1) \\ f_2(1,1) \\ \end{array} \right]
\left[ \begin{array}{c} x_{1} \\ y_{1} \\ \end{array} \right]=\left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right]-\left[ \begin{array}{cc} -\dfrac{1}{6} & -\dfrac{1}{3} \\ \dfrac{2}{3} & \dfrac{1}{3} \\ \end{array} \right]\left[ \begin{array}{c} -1 \\ -\dfrac{1}{2} \\ \end{array} \right]
\left[ \begin{array}{c} x_{1} \\ y_{1} \\ \end{array} \right]=\left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right]-\left[ \begin{array}{c} \dfrac{1}{3} \\ -\dfrac{5}{6}\\ \end{array} \right]
\left[ \begin{array}{c} x_{1} \\ y_{1} \\ \end{array} \right]=\left[ \begin{array}{c} \dfrac{2}{3} \\ \dfrac{11}{6}\\ \end{array} \right]
Siyah noktada baslayip ilk iterasyonla magenta noktasina geldik, bence bir iterasyon icin cok iyi. Amacimiz en yakin kirmizi koktaya ulasmak.

Mathematica programi:
ClearAll["Global`*"]
val = Values@NSolve[{x^2 + y^2 - 3, -2 x^2 - y^2/2 + 2}, {x, y}];
F = {x^2 + y^2 - 3, -2 x^2 - y^2/2 + 2};
b = {x, y};
MatrixForm[J = Grad[F, b]];
MatrixForm[Jinv = Inverse[J]];
{x[0], y[0]} = {2, 1};
val2 = Prepend[Table[
{x[n + 1],
y[n + 1]} = {x[n],
y[n]} - (Jinv /. {x -> x[n], y -> y[n]}).(F /. {x -> x[n],
y -> y[n]}), {n, 0, 2}], {x[0], y[0]}] // N
{{2., 1.}, {1.08333, 1.83333}, {0.695513, 1.64394}, {0.587388, 1.63303}}