Mathematica analitik olarak olarak buluyor sonucu
$\left\{\text{max deger}=\frac{83-11 \sqrt{10}}{1262},x= \frac{77+5 \sqrt{10}}{1262},y=\frac{2}{9}
\left(\sqrt{10}-1\right)\right\}$
f[x_, y_] :=
Min[x (1 - y), -1 + 2 y + (4 y^2)/(4 (1 + y)), (1 - 11 x)/5]
Maximize[{f[x, y], 0 < x < 1/11, (2 (Sqrt[10] - 1))/9 < y < 1}, {x,
y}] // FullSimplify
NMaximize[{f[x, y], 0 < x < 1/11, (2 (Sqrt[10] - 1))/9 < y < 1}, {x,
y}] // N
Show[Plot3D[f[x, y], {x, 0, 1/11}, {y, (2 (Sqrt[10] - 1))/9, 1},
PlotPoints -> 100, Mesh -> None],
Graphics3D[{Red, AbsolutePointSize@6,
Point[{(77 + 5 Sqrt[10])/1262, (2 (Sqrt[10] - 1))/9, (
83 - 11 Sqrt[10])/1262}]}]]
ContourPlot[f[x, y], {x, 0, 1/11}, {y, (2 (Sqrt[10] - 1))/9, 1},
PlotLegends -> Automatic,
Epilog -> {Red, AbsolutePointSize@5,
Point[{(77 + 5 Sqrt[10])/1262, (2 (Sqrt[10] - 1))/9}]},
PlotPoints -> 100]