`Has olmayan' dedigimiz has olan yani uygun olan integrallerin limitidir. Bu nedenle o noktada limit almak gerekir.
Genel olarak limit almak onemli. Limit bu kavrama oturuyor. Ornegin $$\int_0^1 \frac{\sin x}{x}dx$$ integraline `has olmayan' demeyiz. Cunku $$f(x)=\begin{cases} 0 &\text{ eger } x=0 \text{ ise }\\ \frac{\sin x}{x} &\text{ eger } x=0 \text{ ise }\end{cases}$$ fonksiyonu $[0,1]$ kapali araligi uzerinde sinirlidir. Dikkat ettiysen surekli de yapmadim. Kapali aralik uzerinde sinirli olabilecek bir fonksiyon olmasi bizim icin yeterli.
Ozetle: Yani has olmayan integral sadece has olanin makul bir limiti. Tabii onemli olan diger kavram da su: limit almak has olanlarda da yapilabilir mi, evet. (Ispat olarak
buna (video) bakabilirsin). Bu sekilde has olsun, olmasin, istedigin yerde limit alabilirsin.