Sercan Hocam , sizin verdiğiniz ipucuyla soruya şöyle bir şekil verebilir miyiz acaba ?
$ x\in A\cup B$ olsun. O halde $x\in A$ V $x\in B$olur.
Önce 1. Duruma bakalım: $x\not\in A$ , $x\in B$ ise ; $x\in\left(A\cup B\right)$ ve $x\not\in\left(A\cup C\right)$ diyebiliriz.
2. Durum: $x\in A$ , $x\not\in B$ ise $x\in\left(A\cup B\right)$ ve $x\in\left(A \cup C\right )$ diyebiliriz. Demek ki $x\in A$, $x\in B$ imiş.
(Soruda $\subset$ ifadesi olduğu için 2.durum sağlanır , 1. Durum sağlanmaz. Çünkü 1. Durumda $x\not\in\left(A\cup B\right)$ ifadesi var.)
Ve son olarak $y\in\left(A\cap B \right)$ olsun.
Bu durumda $y\in A$ $\wedge$ $y\in B $ olur. Ve $\left(A\cup B\right)$$\subset$$\left(A\cup C\right)$ diyebilmek için $C$'de $y$'den farklı bir eleman vardır.Bu farklı elemana $z$ diyelim.
Bu durumda ( okuyucu şekil çizerse daha iyi anlar) $z$$\in \left(A\cap C\right)\backslash \left(A\cap B\right)$ bulunur.
O halde ,bulunan herşey soruda yerine konursa $[\left\{x,y\right\}\subset \left\{x,z\right\}] \wedge\left\{x\right\}$= $\left\{x\right\}$ bulunur.