Merak edenler için bütün sorunun cevabını da yazıyorum:
Önce $ \left \{ 1000,1001,...,1999 \right \} $ sayılarını inceleyelim $ 2000 $ 'den sonrası belli zaten
Bu sayıları $ a $, $ b $ ve $ c $ rakamlar olmak üzere $ n= 1000+100a+10b+c $ şeklinde yazabiliriz.
$ n+(n+1) $ 'de taşıma olmaması isteniyor o zaman
$ 1 $ ) $ n=1999 $ olabilir
$ 2 $ ) $ n=1a99 $ olabilir $ a \leq4 $
$ 3 $ ) $ n= 1ab9 $ olabilir $ a,b \leq 4 $ (4'ten küçükler çünkü büyük olurlarsa taşıma olur)
$ 4 $ ) $ n= 1abc $ olabilir $ a,b,c \leq 4 $
$ 1 $ 'de $ 1 $ sayı
$ 2 $ 'de $ 5 $ sayı
$ 3 $ 'de $ 5^{2} $ sayı
$ 4 $ 'de $ 5^{3} $ sayı
olur.
Şimdi $ 2000 $ 'den sonraki sayılara bakalım;
$ 2000,2001,2002,2003,2004 $ istediğimiz şartları sağlar,
$ 1000 - 1999 $ arası kurduğum düzen hatrına
$ n= 200a $ ve $ a \leq 4 $ yazayım yine.
Yani sonuç olarak $ 1+5+5^{2}+5^{3}+5=161 $ ardışık sayı çifti seçilebilir.