2)
f'(x)=\lim_{h \to0}\frac{\sqrt{1-2(x+h)}-\sqrt{1-2x}}{h}
=\lim_{h \to0}\left(\frac{\sqrt{1-2(x+h)}-\sqrt{1-2x}}{h}\right)\left(\frac{\sqrt{1-2(x+h)}+\sqrt{1-2x}}{\sqrt{1-2(x+h)}+\sqrt{1-2x}}\right)
=\lim_{h \to0}\frac{1-2(x+h)-(1-2x)}{h(\sqrt{1-2(x+h)}+\sqrt{1-2x})}
=\lim_{h \to0}\frac{-2h}{h(\sqrt{1-2(x+h)}+\sqrt{1-2x})}
=\lim_{h \to0}\frac{-2}{\sqrt{1-2(x+h)}+\sqrt{1-2x}}
=\frac{-2}{\sqrt{1-2x}+\sqrt{1-2x}}
=\frac{-2}{2\sqrt{1-2x}}
=\frac{-1}{\sqrt{1-2x}}