Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
3 beğenilme 0 beğenilmeme
609 kez görüntülendi

$k$ bir cisim olsun ($k = \mathbb{C}$ alabiliriz şimdilik.) Ve $f \in k[x_1, \ldots, x_n]$ bir polinom olsun. $J(f)$ ideali, $f$'nin kısmı türevleri ile gerilen ideal (Jacobi ideali) olsun:

$$J(f)= \left\langle \frac{\partial f}{ \partial x_1}, \ldots ,  \frac{\partial f}{ \partial x_n}  \right\rangle$$

$k[x_1, \ldots, x_n]/J(f)$ idealinin $k$-vektöruzayı olarak boyutuna Milnor sayısı deniyor. Bu sayıyı $\mu(f)$ ile gösterelim.

Eğer $f$ güzel bir polinom ise (isolated singularity, quasi-homogeneous vs), $\mu(f)$'i veren güzel formüller olduğunu duydum ama bulamıyorum. Bu formüller nelerdir, nerelerde bulabilirim?

Örnek: $f = x^3 + y^5 \in k[x,y]$ olsun. $J(f) = \left\langle x^2, y^4 \right\rangle$ olur. $k[x, y]/J(f)$'de $1, x, y, xy, y^2, xy^2, y^3, xy^3$ ve bunların $k$-lineer kombinasyonları dışında her şey ölür. Yani,  $\mu(f) =8$ olur. 

Akademik Matematik kategorisinde (2.5k puan) tarafından 
tarafından düzenlendi | 609 kez görüntülendi
Buradaki teorem 2 gibi mi?

Evet.

Mesela, $f=x_1^{m_1} + \ldots + x_n^{m_n}$ ise (verdiğim örnekteki gibi), o zaman $\mu(f) = (m_1-1) \ldots (m_n -1)$ olur. Ama daha karışık olduğunda ne yapabilirim?

şizofreni başlangıcı

20,280 soru
21,813 cevap
73,492 yorum
2,481,738 kullanıcı