Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
849 kez görüntülendi

$S^1$  ve   $S^3$ kürelerinin lie cebri yapısı varken neden $S^2$ küresinin lie cebri yapısı yok acaba? Netten araştırdım fakat bulduklarımı yeterince yorumlayamadım. Hairy Ball teoreminden bahsediliyor.

Akademik Matematik kategorisinde (94 puan) tarafından  | 849 kez görüntülendi

2 Cevaplar

1 beğenilme 0 beğenilmeme

Lie grubu demek istiyorsunuz herhalde.

Bahsettiğiniz (hairy ball theorem) $\mathbb{S}^2$ üzerinde her yerde sıfırdan farklı bir vektör alanı bulunmadığı teoremidir (kısaca, $\mathbb{S}^2$ nin Euler karakteristiği 0 dan farklı olmasından kaynaklanır). 

Lie gruplarında, sol (veya sağ) invaryant vektör alanlarının varlığı, Lie gruplarında, her yerde sıfırdan farklı, vektör alanlarının  varlığını (hatta çok daha fazlasını) gösterir. 

Bu nedenle $\mathbb{S}^2$  Lie grubu olamaz.

(6.2k puan) tarafından 

Teşekkürler Hocam.

Hocam her Lie grubuna bir lie cebri eşlik ettiği için lie cebiri  dedim.

0 beğenilme 0 beğenilmeme

Doğan Hocamın dediklerine ek olarak $S^n$ hiper kürelerinden $S^1$ ve $S^3$ dışındakilerin Lie grup yapısı yok diye biliyorum.

(3k puan) tarafından 
20,280 soru
21,813 cevap
73,492 yorum
2,483,663 kullanıcı