Burada rolle derken , rollenın kullanılmadıgı çünki hep artan bir fonksiyonla karşı karşıyayız ona dem vurmak için dedim.
$y=x^3+3x+1$
$y'=3x^2+3$ oldugundan
$\triangle_{y'}<0$ olur ve bunun anlamı şudur,
$-\infty \to x \to \infty$ olurken $f(x)$ her zaman artıyormuş, $f$ fonksiyonu görüldüğü üzre sabit bir fonksiyon olmadığından bir kere ve biricik olarak $x$ eksenini keser, bu da ispatlamak istediğimiz şeydir.$\Box$