1.) \sum_{k=0}^n\binom{n}{n-k}x^{n-k}.p^{k} eğer p^k=(y+z)^k olursa;
p^k=\sum_{t=0}^k\binom{k}{k-t}y^{k-t}.z^t
\sum_{k=0}^n\sum_{t=0}^k\binom{n}{n-k}.\binom{k}{k-t}x^{n-k}.y^{k-t}.z^t olur.
2.)(A+B)^n=\sum_{k=0}^n\binom{n}{n-k}A^{n-k}B^k........................* da
A^{n-k}=(x+y)^{n-k}=\sum_{t=0}^{n-k}\binom{n-k}{n-k-t}x^{n-k-t}y^t
B^k=(z+t)^k=\sum_{p=0}^k\binom{k}{p}z^{k-p}.t^p Bu iki ifade (*) da kullanılırsa formül elde edilir.